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Purpose of Descriptive Statistics
• Identify errors in measurement, data collection

• Characterize materials and methods

• Assess validity of assumptions needed for analysis
– Scientific
– Statistical

• Straightforward estimates to address scientific question

• Hypothesis generation
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Which Descriptive Statistics
• Identify errors in measurement, data collection

– E.g., min, max for data out of (plausible) range; N missing

• Characterize materials and methods
– N, mean, SD, geom mean, quantiles, min, max

• Assess validity of assumptions needed for analysis
– Scientific:  Linearity, confounding, effect modification
– Statistical: Nuisance (e.g., heteroscedasticity, distribution)

• Straightforward estimates to address scientific question
– Graphs: Scatterplots / smooths, means by time / dose, etc.
– Tables: Stratified means, geom means, prop / odds, rates

• Hypothesis generation
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With Censored Time to Event Data
• Identify errors in measurement, data collection

• Characterize materials and methods
– Length of potential observation times; N observed events

• Assess validity of assumptions needed for analysis
– Scientific:  Linearity, confounding, effect modification
– Statistical: Nuisance (e.g., PH, distributional fit)

• Straightforward estimates to address scientific question
– Graphs: Stratified Kaplan-Meier plots
– Tables: Stratified restricted means, quantiles, probs, rates

• Hypothesis generation
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With Censored Observations
• Identify errors in measurement, data collection

• Characterize materials and methods
– Length of observation time
– Number of observed events (statistical information)

• Assess validity of assumptions relevant to inference
– (Semi)parametric assumptions (e.g., PH)
– Confounding, effect modification

• Straightforward estimates to address scientific question
– Distribution-free estimates of means, quantiles, hazards

• Hypothesis generation

5

6

Types of Summary Measures
• By feature of distribution

– Typical value (location)
– Spread of distribution (variability)
– Symmetry of distribution (skewness)
– Tendency to extreme values (kurtosis)
– Depiction of entire distribution

• By number of variables described
– Univariate
– Bivariate
– Higher dimensional
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Univariate Location
• Measures of location (“Typical value”)

• Numeric
– Mode
– Mean (arithmetic, geometric, harmonic)
– Median (other percentiles)
– Proportion exceeding a threshold
– Odds of exceeding a threshold
– Rate of events

• Graphical
– Mode of density
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With Censored Time to Event Data
• Measures of location (“Typical value”)

– Method of calculating will be different

• Numeric
– Mode
– Restricted mean (arithmetic, geometric, harmonic)
– Median, other percentiles (depends on censoring distn)
– Proportion exceeding a threshold
– Odds of exceeding a threshold
– Rate of events

• Graphical
– Mode of density
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Univariate Spread
• Measures of spread

• Numeric
– Range (min, max)
– Interquartile range (25th, 75th %ile)
– Variance
– Standard deviation

• Graphical
– Box plot
– Histogram
– Density
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With Censored Time to Event Data
• Measures of spread

– Very rarely used and method of calculating will be different 

• Numeric
– Range (min, max)
– Interquartile range (25th, 75th %ile) (depends on cens distn)
– Variance
– Standard deviation

• Graphical
– Box plot
– Histogram
– Density (usually only partial and rarely calculated)
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Methods Used With Censored Data
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Characterizations
of an Entire Distribution
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Probability Distribution Function
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Empirical Distribution Function
• Sample cumulative distribution function or survivor function can 

be used as an estimate
– (Just treat the sample as if it were the population)

• These functions can sometimes be directly estimated using 
censored data (unlike histograms, densities, etc.)
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Empirical CDF: No Censoring
• Definition:
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Empirical CDF: Properties
• The empirical cdf assigns probability mass of 1/n at each 

observation

• Step function: 
– jumps at each observation
– level between observations

• The empirical cdf can be graphed for an ordered variable

– Because we draw conclusions from the spacing of the x-axis, this 
makes most sense when the measurements are on an interval or 
ratio scale 
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Ex: Age CDF (FEV data)
• From an observational dataset exploring associations between 

smoking and lung function in children
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Survivor Curves
• In biomedicine, we typically look at the “survivor” curves for times 

to an event, rather than the CDF

• Note that we can “see” many common sample statistics from a 
plot of any survival curve

• (With censored data, we will use the Kaplan-Meier estimate, 
rather than the empirical CDF, to obtain the survival curve)
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Kaplan Meier Survival Curve
Erlotinib/Gem vs Placebo/Gem (504 deaths)
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* Stratified log-rank test

Erlotinib/Gem: median OS: 6.37 mos
(95% CI: 5.84 to 7.33)

Placebo/Gem: median OS: 5.94 mos
(95% CI: 5.09 to 6.70)

HR: 0.811 (95% CI: 0.68 to 0.97)

p= 0.017
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Comparing Survival Curves
• With censored data, we cannot use sample means, sample 

standard deviations, sample medians, etc.

• We will see that we can compute the survivor function with 
noninformative right censored data

• In the presence of censored observations, it is thus possible to 
compare population 

A. Median                                    (horizontal difference)
B. Mean                                       (area under curve)
C. Geometric mean                     (area: log x- axis)
D. Standard deviation                  (complicated)
E. 25th and 75th Percentiles         (horizontal difference)
F. Prob of exceeding thresholds  (vertical difference)
G. Hazard ratio                             (related to slopes)
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Setting for Right
Censored Data
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Missing Data
• Ideal: 

“Just say no.”
- Nancy Reagan

• Real life: 

“Missing data happens.”
- Bumper sticker (rough translation)
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Missing Data Classifications
• Mechanistic classification

– Missing completely at random (MCAR)
– Missing at random (MAR)

• Missingness can depend on other observed data
– Missing not at random (MNAR)

• Functional classification
– Ignorable (MCAR and sometimes MAR)

• Discarding cases with missing data does not bias results
– Nonignorable (MNAR and most times MAR)

• Omitting cases with missing data leads to erroneous conclusions
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What Kind of Missingness Do We Have?

“If certain girls don't look at you
It means that they like you a lot
If other girls don't look at you
It just means they're ignoring you
How can you know, how can you know?
Which is which, who's doing what?
I guess that you can ask 'em
Which one are you baby?
Do you like me or are you ignoring me?”

Dan Bern, “Tiger Woods”
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Sad Facts of Life

“Bloodsuckers hide beneath my bed”
- Eyepennies, Mark Linkous (Sparklehorse)

• Typically, nothing in your data can tell you whether missing data is 
ignorable or nonignorable
– You just have to deal with what you worry about
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Censored Data
• Special type of nonignorable missing data 

• The value is known to be in some interval, but the exact value is 
not always known

• Commonly arises when measuring time to some event

• Can also arise when measuring laboratory values due to 
nondetectable levels or saturation of the device
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Types of Censored Data
• Right censoring:

– For some observations it is only known that the true value 
exceeds some threshold 

• Left censoring: 
– For some observations it is only known that the true value is 

below some threshold

• Interval censoring: 
– For some observations it is only known that the true value is 

between some thresholds
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Example: Setting
• A clinical trial of aspirin in prevention of cardiovascular mortality

• 10,000 subjects are randomized equally to receive either aspirin 
or placebo

• Subjects are randomized over a three year period

• Subjects are followed for fatal events for an additional three year 
period following accrual of the last subject
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Example: Right Censoring
• Problem:

– At the end of the clinical trial, some subjects have been observed 
to die

• True time to death is known for these subjects

– At the end of the clinical trial, most subjects are likely to be still 
alive

• Death times of these subjects are only known to be longer than 
the observation time

• “(Right) Censored observations”
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Example: Wrong Approach
• Cannot ignore censored data 

• These are our treatment successes

• If we throw these cases out of the dataset, we will underestimate 
the probability of longer survival
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Example: Bad Solution #1
• Cannot just treat as binary (live/die) data

• Potential time of follow-up (censoring time) differs across subjects
– Administrative censoring (alive at time of analysis)
– Loss to follow-up due to adverse events

• Confounding vs loss of precision
– Confounding if pattern of censoring differs across groups
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Example: Bad Solution #2
• Should not just treat as binary (live/die) data at time of earliest 

censoring

• May not answer the scientific question
– Detecting short term versus long term effects

• Statistically less efficient
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Right Censored Data
• Notation:
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Motivating Example
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Motivating Example
• Hypothetical study of subject survival

• Subjects accrued to study and followed until time of analysis

• Study done at three centers, which started the studies in three 
successive years

• Censoring time thus differs across centers
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Data by Date (Real Time)
Staggered study entry by site

Accrual Group
Year                 A       B       C 

2010  On study      100      -- --
Died       43              

Surviving       57              

2011  On study       57     100      --
Died       27      53      

Surviving       30      47      

2012  On study       30      47     100 
Died       13      22      55 

Surviving       17      25      45 
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Data by Study Time
Realign data according to time on study

Accrual Group
Year                 A       B       C 

1   On study      100     100     100 
Died       43      53      55        

Surviving       57      47      45         

2   On study       57      47      --
Died       27      22      

Surviving       30      25      

3   On study       30      -- --
Died       13       

Surviving       17       
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Combined Data
Accrual Group

Year                 A       B       C      Combined 

1   On study      100     100     100         300
Died       43      53      55         151

Surviving       57      47      45         149 

2   On study       57      47      -- 104
Died       27      22                  49

Surviving       30      25                  55

3   On study       30      -- -- 30 
Died       13                          13

Surviving       17                          17
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Problem Posed by Missing Data
• Sampling scheme causes (informative) missing data

• Potentially, we might want to estimate three year survival 
probabilities 

• Different centers contribute information for varying amounts of 
time
– One year survival can be estimated at A, B, C
– Two year survival can be estimated at A, B
– Three year survival can be estimated at A
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Possible Remedies
• WRONG: Ignore missing

– E.g., 17 of 300 subjects alive at three years

• RIGHT BUT WRONG QUESTION: Use data only up to earliest 
censoring time
– E.g., 149 of 300 subjects alive at one year

• RIGHT BUT INEFFICIENT: Use only center A
– E.g., 17 of 100 subjects alive at three years
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Best Approach
• RIGHT AND EFFICIENT

– Use all available data to estimate that portion of survival for which 
it is informative

– Use Centers A, B, and C to estimate one year survival

– Use Centers A and B to estimate proportion of one-year survivors 
who survive to two years

– Use Center A to estimate proportion of two-year survivors who 
survive to three years
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Theoretical Basis for Approach
• Properties of probabilities

– Probability of event A and B occurring is product of
• Probability that A occurs when B has occurred
• Probability that B has occurred

( ) ( ) ( )BBABA Pr|PrPr  ´=Ç
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Application of Theory to Survival
• For times T1 < T2 , probability of surviving beyond time T2 is the 

product of
– Probability of surviving beyond time T2 given survival beyond time 

T1, and
– Probability of surviving beyond time T1

( ) ( )
( ) ( )1

0
1

00

1
000

210

Pr|Pr                 

PrPr  
For 

--

-

³³³=

³Ç³=³

££££

jjj

jjj

k

tTtTtT

tTtTtT
tttt !

43

44

Estimate Conditional Survival
• Condition on surviving up until the start of the time interval

– Denominator is number of subjects at start of interval
– Numerator is deaths during the interval

• Requirement for validity
– Subjects available at the start of each time interval are a random 

sample of the population surviving to that time
• “Missing at Random” (MAR)
• “Noninformative censoring”
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Estimate Survival Probability
• Estimate probability of survival at the endpoint of  each time 

interval

• Multiply the conditional probabilities for all intervals prior to the 
time point of interest
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Application to Example
• Within interval conditional probabilities

– Use A, B, C to estimate Pr (T0 ³ 1)
– Use A, B      to estimate Pr (T0 ³ 2 | T0 ³ 1)
– Use A           to estimate Pr (T0 ³ 3 | T0 ³ 2)

• Multiply to obtain unconditional cumulative survival
– Pr (T0 ³ 1)
– Pr (T0 ³ 2) =  Pr (T0 ³ 2 | T0 ³ 1)  Pr (T0 ³ 1)
– Pr (T0 ³ 3) =  Pr (T0 ³ 3 | T0 ³ 2)  Pr(T0 ³ 2)
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Motivating Example Results
Survival Probabilities 

Yr  Combined       Each Year                Cumulative

1  On study 300
Died 151

Surviving 149  149/300 = 49.67%                   49.67%

2  On study 104
Died  49

Surviving  55   55/104 = 52.88%     .4967*.5288 = 26.27%

3  On study  30   

Died  13  
Surviving  17   17/ 30 = 56.67%     .2627*.5667 = 14.88%
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