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Noninformative Censoring
• When estimating survivor functions using censored data:

– Censoring must not be informative
• Censored subjects neither more nor less likely to have an event 

in the immediate future

– Censored individuals must be a random sample of those at risk at 
time of censoring: MAR

• Missingness depends on time last observed
• But random among all subjects at that time

– Later: a random sample from all subjects at risk having similar 
modeled covariates: MAR

• Missingness depends on time last observed and some other 
measured and modeled covariates
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Informative Censoring Examples
• Subjects in a RCT are withdrawn due to treatment failure 

– (likely they would die sooner than those remaining)

• Subjects in a RCT in a fatal condition are lost to follow up when 
they go on vacation
– (likely they are healthier than those remaining)

• Leukemia patients in a RCT of bone marrow transplantation are 
censored if they die of infections rather than dying of cancer
– (they might have had a more effective regimen to wipe out 

existing cancer)
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Detecting Informative Censoring
• As a general rule it is impossible to use the data to detect 

informative censoring

• The necessary data is almost certainly missing in the data set

• In some cases, it is impossible to ever observe the missing data: 
“Competing Risks”
– Nonfelines can only die once
– We cannot observe whether subjects dying of one cause are 

more or less likely to die of another if we cure them of the first 
cause
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Life Table Methods
• In the actuarial (e.g., insurance) setting

– The time intervals are often chosen by years, decades, etc.

– The data are presented for each year as
• Nj: Number of subjects at risk at start of interval
• Cj: Number censored during interval (these will contribute half a 

person)
• Dj: Number of events in interval
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Life Table Methods: Notation
• Number at risk, censored, failed in each interval 

( ]

j

j

j

jj

D
C
N
tt

        :events ofNumber 
        :censoredNumber 

            :riskat Number 
,           :interval Time 1-

6



2024 SISCER Module 3: RCT with Time to Event Endpoints
Lecture 9: Estimation of survival curves
:

July, 2024

(c) Scott S. Emerson, M.D., Ph.D. 4

7

Life Table Methods: Formula
• Computation of probability of survival 
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Kaplan-Meier Estimates
• Kaplan-Meier (Product Limit) Estimates

• With more precisely measured individual data
– The time intervals are defined by unique observation times
– The data are presented for each year as

• Nj: Number of subjects at risk at start of interval
• Dj: Number of events at end of interval
• (Note no censoring or events during interval by definition)
• (Note also that for ties, censoring occurs after deaths)
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Kaplan-Meier Notation
• Definition of intervals, number at risk, failures 
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Kaplan-Meier Hazard Estimates
• Computation of hazard and conditional probability of survival in 

interval 
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Kaplan-Meier Survival Estimate
• Estimating survival probability 

S(t) = Pr (T0 > t)
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If Last Observation Censored
• For an interval which ends in a censored observation with no 

observed events, the conditional probability of surviving within the 
interval is 1.

• Note also that if the largest observation time is censored, the KM 
(PLE) survivor function never goes to zero
– We generally regard the KM (PLE) survivor function to be 

undefined for times beyond the largest observation time in this 
situation
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Kaplan-Meier Properties
• The KM (PLE) survivor functions can be shown to be

– Consistent: As sample sizes go to infinity, they estimate the true 
value

– Nonparametric maximum likelihood estimates
• But usual asymptotic (large sample) theory for regular, parametric 

MLE’s does not apply
• Asymptotic (large sample) normal distribution for estimates was 

established differently
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Other Derivations of KM
• The KM (PLE) survivor functions can also be derived as the

– Self-consistent estimator 
• (see Miller, Survival Analysis)

– “Redistribute to the right” estimator
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Redistribute to the Right
• Basic idea

– Recall the empirical cdf assigns probability 1/n to each 
observation

– A censored observation should be equally likely to have event 
time like any of the remaining uncensored observations

• Recursively redistribute the mass of each censored observation 
among the subjects remaining at risk
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Ex: Redistribute to the Right
• Data: 1, 3, 4+, 5, 7+, 9, 10 

– (plus sign means censored)

• Initially: each point has mass 1/7

• Determine probability of events at earliest observed (uncensored) 
event times
– Pr (T0 = 1) = 1/7
– Pr (T0 = 3) = 1/7
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Ex: Redistribute to the Right
• Censored observation at 4

– Divide the mass at 4 equally among the remaining subjects at risk
• Now mass of 1/7 + 1/28 = 5/28 for each of 5, 7, 9, 10

• Determine probability of events at next observed (uncensored) 
event times
– Pr (T0 = 5) = 5/28
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Ex: Redistribute to the Right
• Censored observation at 7

– Divide the mass at 7 equally among the remaining subjects at risk
• Now mass of 5/28 + 5/56 = 15/56 for each of 9, 10

• Determine probability of events at next observed (uncensored) 
event times
– Pr (T0 = 9) = 15/56
– Pr (T0 = 10) = 15/56
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Ex: Redistribute to the Right
Kaplan-Meier estimate of Survival

t Pr (T0 = t) Pr (T0 > t)
0                               1.000
1     1/ 7 = 0.143               .857
3     1/ 7 = 0.143               .714
4            0.000               .714
5     5/28 = 0.179               .536 
7            0.000               .536
9    15/56 = 0.268               .268

10    15/56 = 0.268               .000
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Example: Prostate Ca Time in Remission
• Time in remission among observational cohort of hormonally 

treated prostate cancer
Hormonally Treated Prostate Cancer: Time in Remission
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Better Example: Prostate Ca Remission
• Include number at risk and display censoring times

Hormonally Treated Prostate Cancer: Time in Remission

Time from Treatment (months)
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At risk 50 46 39 32 28 25 20 14 8 8 4 4 4
Surv Prob 1.00 0.86 0.74 0.62 0.56 0.50 0.43 0.33 0.23 0.23 0.18 0.18 0.18
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Risk Sets
• Most often, we recognize that the probability of an event depends 

in some way upon time

• In many cases, that time dependence is something we merely 
want to adjust for as we compare different groups
– It is not as important to contrast the event probability over time

• We can sometimes think of our analysis as stratifying on time and 
analyzing the instantaneous probability of an event
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Hazard Functions
• We are often interested in the rate (over time) at which individuals 

convert from being “event-free” to having had the event
– Time can be calendar time, age, study time …
– (Differ in what we call time zero and how data is pooled)

• At each point in time, we essentially compute a proportion
– Denominator: Individuals currently “event-free” (random sample)
– Numerator: Among those in the denominator, who converts in the 

next instant

• Referred to as 
– Epidemiology: incidence / mortality rates, force of mortality
– Statistics and probability: hazard function
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Left Entry
• We can also handle data in which subjects enter the risk set after 

some unobserved period
– Potentially three variables may be used 

• Start of interval
– Usually assumed to be at time 0 if nothing supplied

• End of interval
• Status at end of interval

– 0 = censored
– Nonzero = event occurred at end of interval 

• We just need a risk set that is a random sample of subjects who 
would have still been at risk at each time point
– We can follow a population for a year, and estimate the lifetime 

experience within individual age strata 
• (Presuming no calendar year or birth cohort effects)
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2009 SSA: Age Effects on Survival
• Estimated survival curves for US population

– But did not have to follow a single birth cohort
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2009 SSA: Age Effects on Hazards
• Could consider hazard in age strata, with some adjustment for 

calendar (birth cohort) effects
– Calendar or birth year cohort effects can be major
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Birth Cohort Effects on Mortality
• Survival curves 1900 to 2100 by 50 year increments

27

28

Calendar Year Effects on Mortality
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Restricted Means
• The area under the KM curve computed for a positive random 

variable will be related to mean survival time
– If there is no censoring, this is exactly the sample mean

• If there is not enough follow-up to observe a KM curve decrease 
to 0, we can only estimate a “restricted” mean
– E.g., Average years alive during first 5 years

• Best: Pre-specify time restriction prior to analysis of data
– Some authors have found that using the maximum observation 

time behaves well
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Restricted Means (Hypothetical Data)
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Mean Residual Life Expectancy
• We sometimes talk about the “residual” life expectancy within a 

particular risk set
– This should not be confused with restricted mean

• For instance, using the 2009 SSA survival estimates

Mean Residual Life Expectancy

If survive to age                          Males                 Females 

0                                     75.9                       80.1

20                                     56.8                       61.5

40                                     38.2                       42.2

60                                     21.3                       24.3

80                                       8.1                         9.7
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Estimating Cumulative Incidence
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Cause Specific Hazards
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Cause Specific Cumulative Incidence
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Informative Competing Risks
• Note that the Aalen-Johansen estimator “accounted” for the 

competing risk in the sense that it ensured that subjects who 
failed due to the competing risk would not be presumed to still be 
at risk for the primary event

• However, in an extreme setting in which a treatment causes 
nonCVD death just prior to when a CVD death would have been 
observed
– the cause specific incidence of CVD death would decrease, and
– the cause specific incidence of nonCVD death would increase
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