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Summarizing Effect

• Based on marginal distributions
– Difference / ratio of means (arithmetic, geometric, …)
– Difference / ratio of proportion exceeding some threshold
– Difference / ratio of medians (or other quantiles)
– Ratio of odds of exceeding some threshold
– Ratio of hazard (averaged across time?)
– …

• Based on joint distribution
– Median difference / ratio of paired observations
– Probability that a randomly chosen measurement from one 

population might exceed that from the other
– …
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Statistical Models

• Options for inference

– Parametric models
• Weibull, lognormal, etc.

– Semiparametric models
• Proportional hazards, etc.

– Nonparametric
• Weighted rank tests: logrank, Wilcoxon, etc.
• Comparison of Kaplan-Meier estimates
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(Semi)parametric vs Nonparametric

• Choice of statistical model can affect

– Computational methods for estimating the summary measure

– Precision of summary measure estimates

– Robustness of inference about the summary measure

– Ability to estimate the summary measure
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General Analysis Models

Probability Models
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Right Censored Data

• Notation:
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Probability Distributions
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Parametric Models

• F is known up to some finite dimensional parameter vectors 
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Parametric Inference
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Parametric Summary Measures
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Parametric Survival Models

• Commonly used parametric survival models are generally 
accelerated failure time models

– Exponential                 (constant hazard)

– Weibull                        (monotonic hazards)

– Gamma                      (monotonic hazards)

– Lognormal                  (increasing, then decreasing hazard)

– Log logistic                 (increasing, then decreasing hazard)

– Families joining several of the above
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Exponential Survival Models

• For 𝑇~ℰ 𝜆 , 𝑓 𝑡; 𝜆 = 𝜆𝑒 !"# , S 𝑡; 𝜆 = 𝑒 !"#

• Mean-variance relationship 𝐸 𝑇 = $
"
, Var 𝑇 = $

"!

• The exponential model corresponds to a constant hazard 𝜆
– It is thus a proportional hazards family

• The exponential model also corresponds to an accelerated failure 
time model: S 𝑡; 𝜆 = S 𝑡𝜆; 1
– Hence, when comparing distributions with parameters 𝜆", 𝜆#, all 

quantiles are proportional

– 𝑀𝑑𝑛 𝑇 = $%& #
'
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Exponential Regression Models

• For covariate vector 𝑋, we model the hazard (mean) according to
𝑙𝑜𝑔 𝜆 = 𝑋 𝛽

• Estimating equations for one sample

𝐿 Φ, 𝑇, 𝐷 ∝;
%&$

'

𝜆 (( 𝑒!")(

𝜕
𝜕𝜆 𝐿 Φ, 𝑇, 𝐷 =

∑𝐷%
𝜆 − ∑ 𝑇%

?𝜆 =
∑𝐷%
∑𝑇%
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Exponential Distribution

• If the hazard can be approximated as nearly constant over the 
support of the censoring distribution, we can estimate the hazard 
from the
– number of observations,
– mean observation time, and
– number of observed events

• The exponential distribution is memoryless, which is a rather 
strong assumption in human lifetimes, but sometimes is not too 
bad an assumption for residual lifetime in very serious disease

Pr 𝑇 ≥ 𝑠 + 𝑡 𝑇 ≥ 𝑠) = Pr(𝑇 ≥ 𝑡)
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Weibull Survival Models
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Weibull Survival Models
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Weibull Survival Models

• Graphical diagnostics for Weibull distribution:
log − log 𝑆 𝑡 = 𝑝 log 𝑡 + log 𝜆

• The logarithm of a Weibull random variable is related to an 
extreme value distribution

• The Weibull distribution can thus be motivated as relating to the 
failure of a system when components are in series
– “A chain is as strong as its weakest link”
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Parametric Accelerated Failure Time Models

• The generation of AFT regression models is based on
log 𝑇 = 𝑌 = 𝑋 𝛽 + 𝜎𝑊, 𝑊 𝑠𝑜𝑚𝑒 𝑒𝑟𝑟𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

• When 𝑒+~𝐹 𝑚$, 𝑚* an F distribution, then
– 𝑚", 𝑚# = 1,1 𝑇~ log logistic
– 𝑚", 𝑚# = 1,∞ 𝑇~ Weibull (and Exponential if 𝜎=1)
– 𝑚", 𝑚# = 𝑚", ∞ 𝑇~ Generalized Gamma (and gamma if 𝜎=1)
– 𝑚", 𝑚# = ∞,∞ 𝑇~ log normal

• These models have not seen much use
– Difficulty in getting them to converge with Newton Raphson
– My view: Distributions that have some scientific validity involve 

infinite parameters
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Parametric Inference
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Parametric vs Distribution-Free

• Choice of summary measures
– Parametric: Use the natural parameterization of the parametric family
– Distribution-free: Use a summary measure chosen by clinical issues

• Estimation of arbitrary functionals of distribution
– Parametric: Use natural parameters of the parametric family

• For instance, 5 year survival in Weibull: exp − 5 3𝜆
)*

– Distribution-free: Use estimates derived from Kaplan-Meier when 
they can be estimated

• Testing for differences between distributions
– Parametric: Test natural parameters which usually correspond to 

stochastic ordering (i.e., one curve dominates the other)
– Distribution-free: Test for differences in the robustly estimated 

summary measure derived from Kaplan-Meier and its SE 21
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Parametric Models: Issues

• Advantages
– Can estimate any of the summary measures

– Can handle sparse data

– Can extrapolate beyond support of censoring distribution

• Disadvantages
– Not robust to other distributions

• Parametric estimates with censoring do not generally have easy 
nonparametric interpretation

– E.g., lognormal model is not particularly robust

– Little reason to suggest particular distribution
• But motivation does exist for Weibull and Gamma
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