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General Analysis Models
Choice of Summary Measures
Used for Inference
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Summarizing Effect

Based on marginal distributions

— Difference / ratio of means (arithmetic, geometric, ...)
Difference / ratio of proportion exceeding some threshold
Difference / ratio of medians (or other quantiles)

Ratio of odds of exceeding some threshold

Ratio of hazard (averaged across time?)

Based on joint distribution

— Median difference / ratio of paired observations

— Probability that a randomly chosen measurement from one
population might exceed that from the other

Statistical Models
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Options for inference

— Parametric models
» Weibull, lognormal, etc.

— Semiparametric models
» Proportional hazards, etc.

— Nonparametric
» Weighted rank tests: logrank, Wilcoxon, etc.
» Comparison of Kaplan-Meier estimates
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(Semi)parametric vs Nonparametric

+ Choice of statistical model can affect

Computational methods for estimating the summary measure

Precision of summary measure estimates

Robustness of inference about the summary measure

Ability to estimate the summary measure

5
General Analysis Models
Probability Models
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Right Censored Data

* Notation:

Unobserved:

True times to event : {Tlo TZO,...,TO}

n

Censoring Times : {Cl ,C,\yoot, C }

Observed data :
Observation Times: 7T, = min(Ti0 ,C, )
L 1 if7,=T°
Event indicators : D, = _
0 otherwise
7
Probability Distributions
Failure time 7' > 0 measures time to an event :
Cumulative distribution function: F(¢) = Pr(T <)
Survivor function : S() = Pr(T > t) =1-F()
Density : = %F(t)
>
Hazard function : A(t)=1im Pr(T e e+ MIT21)
hlo h
t
Cumulative hazard function : A(t) = I A(u) du
0
Censoring variable distribution : C has cdf G(-); pdf g(*)
8

(c) Scott S. Emerson, M.D., Ph.D. 4



2024 SISCER Module 3: RCT with Time to Event Endpoints July, 2024
Lecture 10: Parametric inference with time to event data

Parametric Models

* Fis known up to some finite dimensional parameter vectors

Fr)=v(, @)
where :
‘P(,) has known form
@ 1s finite dimensional and unknown

Parametric Inference
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» Parametric inference generally proceeds through likelihood
methods
— MLE found by Newton-Raphson iteration

» Asymptotic distributions from theory of regular problems

L(&),f,D)= ﬁ(f(ﬂ,&))(l — G(Tl )))D’ (S(T“&))g(Tl ))I_Di

i=l1

* Under independent censoring

L(®;T.D) « H (£ (1 6’))]Di [(s(r: 6’))]1_[)"
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Parametric Summary Measures

0

Mean : é:juf(u;cf))du
0
Median : 0=F05d)

Proportion above threshold : 0= .[ flu; Cf)) du

Weighted average of hazard : 6= jw(u)l(u; Cf)) du
0

11
Parametric Survival Models
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+ Commonly used parametric survival models are generally

accelerated failure time models
— Exponential (constant hazard)
— Weibull (monotonic hazards)
— Gamma (monotonic hazards)
— Lognormal (increasing, then decreasing hazard)
— Log logistic (increasing, then decreasing hazard)
— Families joining several of the above

12
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Exponential Survival Models

For T~E(A), f(t; 1) = 2et28} S(¢; 1) = 728

Var[T] = L

Mean-variance relationship E[T] = e

1
A,

The exponential model corresponds to a constant hazard 4
— ltis thus a proportional hazards family

The exponential model also corresponds to an accelerated failure
time model: S(t; 1) = S(t4; 1)
— Hence, when comparing distributions with parameters 14, 4,, all
quantiles are proportional

_ Mdn [T] 10g2

13

Exponential Regression Models
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For covariate vector X, we model the hazard (mean) according to
log) =X B

Estimating equations for one sample

L(®,T,D) Hg{nl}e—m

0 — oo Z
ﬁL(chD)_T—le

ié ’ (zT)Z)
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Exponential Distribution

If the hazard can be approximated as nearly constant over the
support of the censoring distribution, we can estimate the hazard
from the

— number of observations,

— mean observation time, and

— number of observed events

The exponential distribution is memoryless, which is a rather
strong assumption in human lifetimes, but sometimes is not too
bad an assumption for residual lifetime in very serious disease

Pr(T>s+t|T>=s)=Pr(T=1t)

15

Weibull Survival Models
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For T ~W(4,p), f(t;4,p) = pA(At)P~1e~ AP, §(t;2) = =07

Mean-variance E[T] = %l’ (1 + %)

Var[T] = [r (1 + f—)) - {r (1 + %)}2]
Hazard function h(t; 4, p) = pA(At)P~1

Log hazard function is linear in log time
logh(t; A,p) = (logp + plogd) + (p — 1) logt

Weibull can be good approximation for any distribution that is
log linear in log t over the support of the censoring distribution

16

(c) Scott S. Emerson, M.D., Ph.D.

July, 2024



2024 SISCER Module 3: RCT with Time to Event Endpoints July, 2024
Lecture 10: Parametric inference with time to event data

Weibull Survival Models

» If shape parameter p = 1, then Exponential
- p > 1 has monotonically increasing hazard
- p < 1 has monotonically decreasing hazard

* For fixed shape parameter p, then
— Proportional hazards family, and

— Accelerated failure time model (all quantiles proportional)

1/
« Mdn(r) = {82~

* Assuming constant p, regression models: logA = Xﬁ

- B either log hazard ratio or log median ratio for AX; = 1

17

Weibull Survival Models
» Graphical diagnostics for Weibull distribution:
log(—1logS(t)) = p(logt + log )

* The logarithm of a Weibull random variable is related to an
extreme value distribution

» The Weibull distribution can thus be motivated as relating to the
failure of a system when components are in series
— “Achain is as strong as its weakest link”

18
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Parametric Accelerated Failure Time Models

The generation of AFT regression models is based on
logT =Y = X E + oW, W some error distribution

When e" ~F(m,,m,) an F distribution, then
- (my,m,) =(1,1) T~ log logistic
- (my,m,) = (1,0) T~ Weibull (and Exponential if 6=1)
- (my,my) = (my,©) T~ Generalized Gamma (and gamma if =1)
- (my,m,) = (0,0) T~ log normal

These models have not seen much use

— Difficulty in getting them to converge with Newton Raphson

— My view: Distributions that have some scientific validity involve
infinite parameters

19

Parametric Inference
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Parametric inference generally proceeds through likelihood
methods
— MLE found by Newton-Raphson iteration

Asymptotic distributions from theory of regular problems

L(&),f,D)= ﬁ(f(ﬂ,&))(l — G(Tl )))D’ (S(T“&))g(Tl ))I_Di

i=l1

Under independent censoring

L(®T,D) « 1_[ (rra )] (s ®)]
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Parametric vs Distribution-Free

* Choice of summary measures
— Parametric: Use the natural parameterization of the parametric family
— Distribution-free: Use a summary measure chosen by clinical issues

» Estimation of arbitrary functionals of distribution
— Parametric: Use natural parameters of the parametric family

- For instance, 5 year survival in Weibull: exp (—(SZ)ﬁ)

— Distribution-free: Use estimates derived from Kaplan-Meier when
they can be estimated

» Testing for differences between distributions

— Parametric: Test natural parameters which usually correspond to
stochastic ordering (i.e., one curve dominates the other)

— Distribution-free: Test for differences in the robustly estimated
summary measure derived from Kaplan-Meier and its SE 21

21

Parametric Models: Issues
* Advantages
— Can estimate any of the summary measures

— Can handle sparse data

— Can extrapolate beyond support of censoring distribution

» Disadvantages
— Not robust to other distributions
» Parametric estimates with censoring do not generally have easy
nonparametric interpretation
— E.g., lognormal model is not particularly robust

— Little reason to suggest particular distribution
» But motivation does exist for Weibull and Gamma

22
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