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Nonparametric (Distribution Free) Models

• Form of F is completely arbitrary and unknown within groups

• The summary measure measuring factor effect is just some 
difference between distributions

• The summary measure is estimated nonparametrically
– (preferably within groups and then compared across groups)
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Comparison of Summary Measures

• Typical approaches to compare response across two treatment 
arms
– Difference / ratio of means (arithmetic, geometric, …)
– Difference / ratio of medians (or other quantiles)
– Median difference of paired observations
– Difference / ratio of proportion exceeding some threshold
– Ratio of odds of exceeding some threshold
– Ratio of instantaneous risk of some event

• (averaged across time?)
– Probability that a randomly chosen measurement from one 

population might exceed that from the other
– …
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Nonparametric Summary Measures

• Nonparametric: Estimate summary measures from nonparametric 
empirical distribution functions
– E.g., use sample median for inference about population medians
– In the presence of censoring, use estimates based on Kaplan-Meier 

estimates
– Often the nonparametric estimate agrees with a commonly used 

(semi)parametric estimate
• Interpretation may depend on sampling scheme
• In this case, the difference will come in the computation of the 

standard errors
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Nonparametric Summary Measures
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Nonparametric Summary Measures

• Depending on the censoring scheme, not all summary measures 
are estimable

• The support of the censoring distribution may preclude estimation 
of the mean and some quantiles

• Can instead use the mean of the truncated distribution
– “Average increase in days alive during first 5 years”

• In most cases, variance estimates can be obtained from the 
asymptotic theory of the Kaplan-Meier estimates
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Distribution-Free Interpretation of Parametric Models

• My emphasis on distribution-free inference should not be 
interpreted as rejection of all methods that were originally derived 
using parametric models

• The t test that allows for unequal variances is the best 
distribution-free inference that I know

• Instead, what we need to do is always examine the estimating 
equations derived from parametric models, and identify those 
settings where the results generalize and those settings where 
results might be misleading
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Relatively Robust “Estimating Equations”

• The most commonly used statistical methods for comparing two 
samples can be viewed as special cases of a regression model

• Relatively distribution-free regression models
– Linear (robust SE):                  Diff of means (proportions)
– Linear on logs (robust SE):      Ratio of geometric means
– Poisson (robust SE):                Ratio of means (proportions, rates)
– Logistic:                                    Odds ratios
– Proportional hazards:               Ratios of (weighted avg) hazards

• Regression models with greater dependence on the distribution
– Exponential:                             Ratios of means, quantiles, hzds
– Weibull:                                    Ratios of quantiles, hazards
– Accel failure time:                     Ratios of quantiles
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Two Sample Inference

The Setting

9
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Two Sample Setting

"Because the simplest thing statisticians
need to do is compare two groups. 

And we don't know how to do it."

• Attributed to Fred Mosteller when asked by Dr. Elliot Antman (a 
well known cardiologist) to explain why we need so many types 
of two sample comparison procedures. 
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Survival Analysis Methods

• Parametric
– Accelerated failure time regression models

• Semiparametric
– Proportional hazards regression models

• Nonparametric
– Kaplan-Meier curves

• Survival probabilities at a pre-specified time
• Pre-specified quantiles
• Restricted means (pre-specified restriction)

– Weighted logrank statistics
– U statistic (“Win ratio”)
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Weighted Logrank Statistics

• Generalization of statistics derived from the proportional hazards 
setting

• Particularly of interest in the setting of nonproportional hazards
– Early, transient treatment effects
– Late treatment effects occurring after some delay
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Constant, Late, Early Effects
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Right Censored Data

• Notation:
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Logrank Statistic

• Originally described as a straightforward approach to the 
presence of censoring

• If we had followed all subjects a fixed amount of time, we could 
use binomial proportions or odds

• Time is merely a confounder and/or precision variable in the 
analysis of the probability of failure

• Adjust for time by stratification (dummy variables)
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Logrank Statistic

• Analysis of stratified 2x2 contingency tables
– Mantel-Haenszel statistic
– Noninformative censoring allows the repeated use of the same 

people in all of the strata

• Can also be derived as the score statistic from the proportional 
hazards partial likelihood
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Partial Likelihood

• Covariate vector for the 𝑖-th subject: 𝑋!

𝜆! 𝑡 = 𝜆" 𝑡 exp 𝑋! 𝛽

𝐿 𝛽 ∝ ∏!#$
% &'( )! *

∑":$"%$! &'( )" *

,!

log 𝐿 𝛽 =1
!#$

%

𝐷! 𝑋! 𝛽 − log 1
-:/"0/!

exp 𝑋- 𝛽
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Partial Likelihood Based Score

• Appears as
– The covariate value observed for the individual that had an event
– Minus value expected among risk set as weighted by relative hazard

𝑈1 𝛽 =
𝜕
𝜕𝛽1

log 𝐿 𝛽 =1
!#$

%

𝐷! 𝑋!1 −
∑-:/"0/! X23exp 𝑋- 𝛽

∑-:/"0/! exp 𝑋- 𝛽
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Partial Likelihood Based Score: Two Samples

• For a two sample problem, 𝑋! = 0, 1
– For group 𝑥, let 𝑑&' be events and 𝑛&' be number at risk at time 𝑡&

𝑈1 𝛽 =1
!#$

%

𝑑!$ −
𝑛!$𝑒*

𝑛!" + 𝑛!$𝑒*
𝑑!" + 𝑑!$

𝑈1 𝛽 =1
!#$

%
𝑛!"𝑛!$

𝑛!" + 𝑛!$𝑒*
?𝜆!$ − 𝑒* ?𝜆!"

• Under the null hypothesis 𝑒* = 1, and with equal censoring 
distributions, number at risk will tend to reflect the randomization 
ratio
– Relative weighting of observed differences in hazard over time by 

size of risk group
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Partial Likelihood Based Information
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Partial Likelihood Based Information: Two Samples

• For a two sample problem, 𝑋! = 0, 1
– For group 𝑥, let 𝑑&' be events and 𝑛&' be number at risk at time 𝑡&

𝐼1ℓ 𝛽 =1
!#$

%
𝑛!"𝑛!$𝑒*

𝑛!" + 𝑛!$𝑒* 5

• Under the null hypothesis, equivalent to mean variance of a 
binomial proportion
– Given that an event occurred, the probability it was in group 1 should 

be a reflection of the total hazards from each group in the risk set
– Under the null, we might expect the ratio in the risk set to mirror the 

randomization ratio
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Standard Error of Hazard Ratio Estimates

• For use in sample size formula
– For groups 𝑖 = 1,2, independent subjects j= 1,… , 𝑛_𝑖
– Randomization ratio 𝑟 = -!

-"

– Observations of censored time to event 𝑇&. , 𝛿&. , 𝑑 = ∑&∑. 𝛿&.
– log hazard ratio 𝜃 with 1𝜃 = 1𝛽 from PH regression

• Under the null hypothesis

𝑠𝑒 D𝜃 = 7
%

with   𝑉 = ($9:),

:<: =!"#$

D𝜃 ~̇ 𝒩 𝜃,
(1 + 𝑟)5

𝑟 𝑑
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Logrank Statistic

• Under proportional hazards, the efficient score statistic is a 
weighted average of differences in hazards (proportions)

• Weights are roughly proportional to the size of the risk sets at 
each failure time

• Intuitively reasonable if the treatment effect is constant over time

• Under time-varying treatment effects, we might want to weight 
more heavily the times with a difference in hazards
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Weighted Logrank Statistics

• For a two sample problem, 𝑋! = 0, 1
– For group 𝑥, let 𝑑&' be events and 𝑛&' be number at risk at time 𝑡&

• Choose additional weights to detect anticipated effects
– 𝐺/0 family of weighted logrank statistics

𝑈1 𝛽 =1
!#$

%

𝑤(𝑡!)
𝑛!"𝑛!$

𝑛!" + 𝑛!$𝑒*
?𝜆!$ − 𝑒* ?𝜆!"

𝑤 𝑡 = ?𝑆⋅(𝑡)
?
1 − ?𝑆⋅(𝑡)

@
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Grg Family 

• Fleming & Harrington:

– Logrank statistic: ρ=0; γ=0

– Wilcoxon statistic: ρ=1; γ=0
• Weights early differences more heavily

– “Early” defined relative to survivor function, not time

– ρ=1; γ=1
• Places greatest weight between 25th, 75th quantiles

– ρ=0; γ=1
• Weights late differences more heavily

25
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Constant, Late, Early Effects
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Constant (PH) Effects: Power
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Early Effects: Power
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Late Effects: Power
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Caveats

• The scientific interpretation of these weighted logrank statistics is 
difficult in the presence of nonproportional hazards
– (And why use them when we have PH?)

• The weights we specify are only part of the story
– The size of the risk sets at each failure time also affects the 

inference
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Other Factors Affecting Weights

• The size of the risk set is affected by

– The survivor function in each group
• Something we care about
• Something we hope is consistent across studies

– The censoring distribution in each group
• Something that we usually regard a matter of convenience
• Something that we hope will not affect the scientific estimates, 

just the statistical precision

31

32

Censoring Affected By Accrual

• Consider patterns of accrual that are either uniform, faster early, 
or faster late
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Inference for PH, Late Tx Effects

• For the same survival curves, different accrual patterns greatly 
affect the asymptotic behavior of the weighted logrank statistics

33
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Transitivity

• The weighting scheme used in the weighted logrank statistics 
also introduces intransitivity to studies
– (Generally less of an issue with unweighted logrank statistic)

• The weights are stochastically determined from
– Each group’s survivor function
– The censoring distribution

• Hence we can obtain A > B > C > A
– Very distressing to regulatory agencies, if not all scientists
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Demonstrating Intransitivity

35
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Effect of Censoring on Inference

• The estimates of treatment benefit can vary even more markedly 
according to the censoring distribution

• With “crossing hazards”, changes in censoring can make any of 
the weighted logrank statistics qualitatively differ from each other

• And it is possible for the conclusion drawn from the statistic to 
differ markedly from the conclusion suggested by the survival 
curves
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Hypothetical Example: Setting

• Consider survival with a particular treatment used in renal dialysis 
patients

• Extract data from registry of dialysis patients

• To ensure quality, only use data after 1995
– Incident cases in 1995: Follow-up 1995 – 2002 (8 years)
– Prevalent cases in 1995: Data from 1995 - 2002

• Incident in 1994: Information about 2nd – 9th year
• Incident in 1993: Information about 3rd – 10th year
• …
• Incident in 1988: Information about 8th – 15th year

37
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Hypothetical Example: Analysis

• Methods to account for censoring/truncation

• Descriptive statistics using Kaplan-Meier
• Options for inference

– Parametric models
• Weibull, lognormal, etc.

– Semiparametric models
• Proportional hazards, etc.

– Nonparametric
• Weighted rank tests: logrank, Wilcoxon, etc.
• Comparison of Kaplan-Meier estimates
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Hypothetical Example: KM Curves
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Who Wants To Be A Millionaire?

• Proportional hazards analysis estimates a Treatment : Control
hazard ratio of

A:      2.07   (logrank P = .0018)
B:      1.13   (logrank P = .0018)

C:      0.87   (logrank P = .0018)
D:      0.48   (logrank P = .0018)

• Lifelines: 
– 50-50? Ask the audience? Call a friend?

40
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Who Wants To Be A Millionaire?

• Proportional hazards analysis estimates a Treatment : Control
hazard ratio of

B:      1.13   (logrank P = .0018)

C:      0.87   (logrank P = .0018)

• Lifelines: 
– 50-50? Ask the audience? Call a friend?

41
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Who Wants To Be A Millionaire?

• How could you have known this?

• In PH with equal sample sizes at start of study, the standard error 
of log hazard ratio estimates is approximately 2 divided by the 
square root of the number of events.
– A P value of .0018 corresponds to | Z | = 3.13
– log(2.07) = -log(0.48) is approximately 0.7
– 3 x 2 / .7 is about 8.4
– Number of deaths would be about 72
– We had 5000+ subjects with survival estimated down to 30%
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Who Wants To Be A Millionaire?

• Proportional hazards analysis estimates a Treatment : Control
hazard ratio of

B:      1.13   (logrank P = .0018)

• The weighting using the risk sets made no scientific sense
– Statistical precision to estimate a meaningless quantity is 

meaningless

• This happened due to left entry.
– In a RCT, we would have monotonically decreasing risk sets

43
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Hypothetical Example: KM Curves
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An Aside: Comparing ROC Curves

• The PH model could be assumed for ROC curves
– Such would force non crossing ROC curves

• If the PH assumption does not hold, using the Cox estimating 
equation can lead to different results under the strong null if the 
ratio of sample sizes used in two studies differ

• However, if the placement value approach described by Pepe is 
used under the PH assumption, no such problem arises
– Moral: Use of “efficient” estimation techniques from an erroneous 

model can send you further astray than using a more distribution free 
approach

45
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General Analysis Models

U Statistics and Multifactorial Events
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Multifactorial Measures of Disease Severity

• Model associations among components
• Model must be based on untestable assumptions due to 

sparseness

• Event free survival
• Like censoring deaths if competing risk hazard low
• Like censoring deaths if everyone gets cancer first
• Loss of power if truly noninformative censoring

• Wilcoxon like statistic (“Win ratio”)
• Rank first on death times; break ties with cancer dx, etc.
• Like survival only if everyone dies

• Survival only
• Not really the question, especially if competing risk hazard is high

47
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Wilcoxon Rank Sum Test

• Transform all data to their ranks in the combined sample

• Then compare average ranks for two groups

• Exact distribution from permutation tests
– What is the probability of obtaining a particular average rank for a 

group if we just mix up all the observations?
• Draw n numbers from the integers from 1 to m+n

– A test of the null hypothesis that the two distributions are equal

• A central limit theorem can be used in large samples

48
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Mann-Whitney Formulation

• Rank sum test considers the probability that a randomly chosen 
subject from one group might be larger than a randomly chosen 
subject from the other group

• “Pr (Y > X)”
– Intuitive null hypothesis: Pr (Y > X) = 0.5

𝑈 =6
&

6
.

𝕀[2#34$] + 0.5 ×𝕀[2#64$]

• Not consistent in large samples for just ANY difference in 
distributions, only if distributions such that Pr (Y > X) is not 0.5

49
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Mann-Whitney Application to Censored Survival Data

• Given censored data in two groups
– (𝑌& , 𝛿&) and (𝑋. , 𝑑.) as observation times and indicators of censoring

• (𝑌! , 𝛿!) > (𝑋- , 𝑑-) if  𝑌! > 𝑋- 𝑎𝑛𝑑 𝑑- = 1

• (𝑌! , 𝛿!) < (𝑋- , 𝑑-) if  𝑌! < 𝑋- 𝑎𝑛𝑑 𝛿- = 1

• (𝑌! , 𝛿!) tied with (𝑋- , 𝑑-) in all other cases

• This statistic can be shown to be equal to the Wilcoxon form of a 
weighted log rank statistic

50
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Mann-Whitney Application to Censored Survival Data

• Given censored data in two groups
– (𝑌& , 𝛿&) and (𝑋. , 𝑑.) as observation times and indicators of censoring

• (𝑌! , 𝛿!) > (𝑋- , 𝑑-) if  𝑌! > 𝑋- 𝑎𝑛𝑑 𝑑- = 1

• (𝑌! , 𝛿!) < (𝑋- , 𝑑-) if  𝑌! < 𝑋- 𝑎𝑛𝑑 𝛿- = 1

• (𝑌! , 𝛿!) tied with (𝑋- , 𝑑-) in all other cases

• Then compute U statistic using this definition for ordering
• This statistic can be shown to be equal to the Wilcoxon form of a 

weighted log rank statistic

51
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Extensions to Multiple Endpoints

52
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Extensions to Covariate Adjustment

53

54

Basic Idea of Extensions: Tie Breakers

• Given possibly censored or longitudinal data vectors in two 
groups: 𝕐! , 𝕏- where components might be
– (𝑌&7 , 𝛿&7) and (𝑋.7 , 𝑑.7) as observation times, indicators of censoring
– (𝑌&7(𝑡), 𝑡&7) and (𝑋.7(𝑠), 𝑠.7) as longitudinal processes measured up 

to specified times

• For every pair to be compared, evaluate first on the component 
highest in the hierarchy

• In the event of ties, go to the next component in the hierarchy, 
etc.

• Can either do all pairs, or first stratify subjects according to 
prognostic variables
– Similar to van Elteren statistic

54
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55

Basic Idea of Extensions: Tie Breakers

• Given any pair of observation, one from each group, we order

– Censored survival times
• (𝑌& , 𝛿&) > (𝑋. , 𝑑.) if  𝑌& > 𝑋. 𝑎𝑛𝑑 𝑑. = 1
• (𝑌& , 𝛿&) < (𝑋. , 𝑑.) if  𝑌& < 𝑋. 𝑎𝑛𝑑 𝛿. = 1
• (𝑌& , 𝛿&) tied with (𝑋. , 𝑑.) in all other cases

– Longitudinal processes
• (𝑌&7(𝑡), 𝑡&7) > (𝑋.7(𝑠), 𝑠.7) by judging process up to min(𝑡&7, 𝑠.7)
• (𝑌&7(𝑡), 𝑡&7) < (𝑋.7(𝑠), 𝑠.7) by judging process up to min(𝑡&7, 𝑠.7)
• tied in all other cases

55

Example: STEP-HFpEF (semaglutide
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Additional Comments

• The Wilcoxon rank sum test can be shown to be “intransitive”
– It is possible to simultaneously decide that

• Group A tends to be higher than Group B
• Group B tends to be higher than Group C
• Group C tends to be higher than Group A

– Arises because Pr ( Y > X ) is intransitive

• By adding in a great many other variables into the hierarchy and 
perhaps having different ”censoring” or “sampling” distribution for 
each component, the generalizability across studies is even more 
difficult

• It is not at all clear to me how one would judge clinical importance
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