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Sample Size Formula

Common Settings

Where am I going?

• The most common RCT designs can all use the same sample size 
formulat
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Sample Size Calculation

• Traditional approach
– Sample size to provide high power to “detect” a particular alternative

• Decision theoretic approach
– Sample size to discriminate between hypotheses

• “Discriminate” based on interval estimate
• Standard for interval estimate: 95% 

– Equivalent to traditional approach with 97.5% power
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Issues

• Summary measure
– Mean, geometric mean, median, proportion, hazard…

• Structure of trial
– One arm, two arms, k arms
– Independent groups vs cross over
– Cluster vs individual randomization
– Randomization ratio

• Statistic
– Parametric, semi-parametric, nonparametric
– Adjustment for covariates
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Measures of Precision

• Estimators are less variable across studies
– Standard errors are smaller

• Estimators typical of fewer hypotheses
– Confidence intervals are narrower

• Able to statistically reject false hypotheses
– Z statistic is higher under alternatives
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Criteria for Precision

• Standard error

• Width of confidence interval
• Statistical power

– Probability of rejecting the null hypothesis
• Select “design alternative”
• Select desired power
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Statistics to Address Variability

• At the end of the study:
– Frequentist and/or Bayesian data analysis to assess the credibility of 

clinical trial results
• Estimate of the treatment effect

– Single best estimate
– Precision of estimates

• Decision for or against hypotheses
– Binary decision
– Quantification of strength of evidence
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Sample Size Determination

• Based on sampling plan, statistical analysis plan, and estimates 
of variability, compute

– Sample size that discriminates hypotheses with desired power, or

– Hypothesis that is discriminated from null with desired power when 
sample size is as specified, or

– Power to detect the specific alternative when sample size is as 
specified
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Sample Size Computation
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When Sample Size Constrained

• Often (usually?) logistical constraints impose a maximal sample 
size
– Compute power to detect specified alternative

– Compute alternative detected with high power

n
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Std Errors: Key to Precision

• Greater precision is achieved with smaller standard errors

• In a fixed sample study
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Ex: One Sample Mean

• Data                                   𝑌! ~ 𝜇, 𝜎" , 𝑖 = 1,… , 𝑛 𝑖. 𝑖. 𝑑

• Summary measure             𝜃 = 𝜇

• Estimator                            .𝜃 = /𝑌

• Sampling unit variability     𝑉 = 𝜎"

• Standard error                   𝑠𝑒 .𝜃 = ⁄𝑉 𝑛 = #!

$
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Ex: Difference of Independent Means

• Data                                   𝑌!% ~ 𝜇! , 𝜎!" , 𝑖 = 0,1, 𝑗 = 1… , 𝑛% 𝑖nd.

𝑛 = 𝑛& + 𝑛', 𝑟 = 𝑛&/𝑛'
• Summary measure             𝜃 = 𝜇& − 𝜇'
• Estimator                            .𝜃 = <𝑌& − <𝑌'

• Sampling unit variability     𝑉 = (𝑟 + 1) &
(
𝜎&" + 𝜎'"

• Standard error                   𝑠𝑒 .𝜃 = ⁄𝑉 𝑛 = #"!

$"
+ ##!

$#
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Ex: Hazard Ratio

• Rt cens time to event          𝑌!% , 𝛿!% = 0,1, 𝑗 = 1… , 𝑛% 𝑖𝑛𝑑ep

𝑛 = 𝑛& + 𝑛', 𝑟 = 𝑛&/𝑛'

• Summary measure             𝜃 = )" *
)!(*)

ℎ𝑎𝑧𝑎𝑟𝑑 𝑟𝑎𝑡𝑖𝑜

• Estimator                        .𝜃 = 𝑒-. G𝛽 𝑓𝑟𝑜𝑚 𝐶𝑜𝑥 𝑃𝐻

• Sampling unit variability 𝑉 = (/& !

( 0([23&]

• Standard error               𝑠𝑒 log .𝜃 = 5
$
= (/& !

(6
𝐷 = ∑!∑% 𝛿!%
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Ex: Hazard Ratio

• Sample size formula will provide the number of events

• Accrual model to estimate the number of subjects: 
– Exponential survival times 𝑇$%& ~ ℰ(𝜆$)

– Median survival in control group 𝑚& leading to hazard 𝜆& =
'() *
+!

– Hypothesized hazard ratio 𝜃 = ,"
,!

⟹ 𝜆- = 𝜃𝜆&
– Accrue subjects uniformly from time 0 to time 𝑎
– Follow subjects up to time 𝜏 > 𝑎

• Estimate probability of an observed event in combined sample

𝑃𝑟 𝛿!% = 1 = 1 − 789 :;. <:=
;.=

+ 789 :;.<
;.=

• Accrue

𝑛 = 𝑛' + 𝑛& 𝑛'=
6

(0( 2"/3& /0( 2#/3&
𝑛&= 𝑟𝑛'
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Modifications for Hazard Ratio

• Hypothesized hazard ratio might be
– Under the null: 1.0
– Under an alternative presuming adjusting for prognostic covariates

• Often sponsors will use simulations to explore
– Non uniform accrual

– Weibull time to event (or some other distribution)

– Impact of intercurrent events
• Competing risks
• Withdrawal of consent

– Attrition due to loss to follow-up
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Ex: KM Estimate of Survival Probability

• If we wanted to use a Kaplan-Meier estimate of 𝑆 𝜏 as a primary 
endpoint, we can use the asymptotic normality of G𝑆 𝜏

• The variance is computed using Greenwood’s formula
– Hazard estimate is a proportion: Dj / Nj
– Variance of hazard estimate from theory about binomial proportions
– Delta method to get variance of log (1 - Dj / Nj )
– Then use properties of expectation to get variance of log S(t) = S log 

(1 - Dj / Nj )
• Noninformative censoring leads to asymptotically uncorrelated 

hazard estimates
– Use delta method to get variance of S(t)
– Standard error is square root of variance of S(t)
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Survival Probability Estimates

• Maximum likelihood estimates for
– Conditional survival probability within intervals

– Unconditional survival probability
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Notational convenience
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Logarithmic Transformation

• Sums are easier to work with than products
– The log transformed unconditional survival probability is the sum of 

log transformed conditional survival probabilities
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Basic Approach

• We will find the standard error of the log transformed survival 
probabilities by

– Estimating each conditional survival probability and finding the 
variance of the log transformed estimates

– Invoking noninformative censoring to argue that the sum of our log 
transformed estimates must have the same distribution as the sum of 
log transformed independent estimates
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Standard Error of Proportions

• From the laws of expectation, for the jth interval
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Large Sample Approximation

• From the central limit theorem
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Logarithmic Transformation

• From the delta method
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Noninformative Censoring

• In the presence of noninformative censoring, the risk set in any 
interval should look like a random sample of the population at risk

• Estimates of the conditional probability of survival for the intervals 
should be uncorrelated
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Confidence Intervals

• Using the large sample approximation with plug-in estimates for 
standard errors
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Greenwood’s Formula

• SE for the survival probabilities by a second application of the 
delta method

27
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Ex: KM Estimate of Survival Probability

• We see that the standard error of our estimator will depend 
heavily on
– the distribution of the time to event, and
– the censoring distribution

• We could take an approach based on, say, an exponential 
distribution as we did for HR based inference
– This would likely not differ much from an approach using the 

parametric estimator
– It would likely not be too reliable in general

• Similar issues would arise when trying to use the restricted mean 
as the primary endpoint
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Options to Increase Precision

• Increase sample size

• Decrease V
– With HR: adjust for important prognostic variables
– Using anecdotal simulations shown in Lecture 17:

• A prognostic variable having HRW= 1.82 per 1 SDW of its distn
– Unadjusted HRX = 0.638 corresponds to adjusted HRX= 0.607
– Adjustment increase power from 61% to 70%
– Equivalent to 23% increase in number of events

• A prognostic variable having HRW= 2.46 per 1 SDW of its distn
– Unadjusted HRX = 0.668 corresponds to adjusted HRX= 0.607
– Adjustment increase power from 52% to 70%
– Equivalent to 55% increase in number of events

• (Decrease confidence level)

29
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Subgroups

• Testing for effects in K subgroups
– Does the treatment work in each subgroup?
– Bonferroni correction: Test at α / K

• No subgroups:                                          N = 100
• Two subgroups:                                        N = 230

• Testing for interactions across subgroups
– Does the treatment work differently in subgroups?

• Two subgroups:                                        N = 400
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