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Without Loss of Generality     

• Our ultimate interest is in comparing
– Fixed sample tests
– Group sequential tests
– Other adaptive strategies

• We will thus further restrict attention to a one-sample setting in 
which
– V = 1
– Test of a one-sided alternative (q+ > q0 )

• Upper Alternative:    H+: q ³ q+ = 3.92    (superiority)    
• Null:                          H0: q £ q0 =   0    (equivalence, inferiority)
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Fixed Sample Test

• Sample size N = 1 provides
– Type 1 error of 0.025
– Power of 0.975 to detect the alternative of 3.92
– At the final analysis, an observed estimate (or Z statistic) of 1.96 will 

be statistically significant

• Power and sample size table

True Effect Power Avg N

0.00 0.025 1.00

1.96 0.500 1.00

2.80 0.800 1.00

3.24 0.900 1.00

3.92 0.975 1.00
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Group Sequential Approach

• Perform analyses when sample sizes N1. . . NJ

– Can be randomly determined if independent of effect

• At each analysis choose stopping boundaries
– aj < bj < cj < dj

– Often chosen according to some boundary shape function
• O’Brien-Fleming, Pocock, Triangular, …

• Compute test statistic Tj= T(X1. . . XNj)
– Stop if      Tj < aj (extremely low)
– Stop if   bj < Tj < cj (approximate equivalence)
– Stop if      Tj > dj (extremely high)
– Otherwise continue
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Stopping Boundary Scales

• Boundary scales (1:1 transformations among these)
– Z statistic
– P value

• Fixed sample (so wrong)
• Computed under sequential sampling rule (so correct)

– Error spending function
– Estimates

• MLE (biased due to stopping rule)
• Adjusted for stopping rule

– Conditional power
• Computed under design alternative
• Computed under current MLE

– Predictive power
• Computed under flat prior (possibly improper)
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Exploring Group Sequential Designs

• Candidate designs
– J = 2 equal spaced analyses; O’Brien-Fleming efficacy boundary

• Do not increase sample size (so lose power)
• Maintain power under alternative (so inflate maximal sample size)

– J = 2 equal spaced analyses; OBF efficacy, futility boundaries
• Do not increase sample size (so lose power)
• Maintain power under alternative (so inflate maximal sample size)

– J = 2 equal spaced analyses; OBF efficacy, more efficient futility 
• Do not increase sample size (so lose power)
• Maintain power under alternative (so inflate maximal sample size)

– J = 4 equal spaced analyses; OBF efficacy, more efficient futlility
• Do not increase sample size (so lose power)
• Maintain power under alternative (so inflate maximal sample size)

– J = 2 optimally spaced analyses; optimal symmetric boundaries
• Maintain power under alternative (inflate NJ, but optimize ASN)
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Exploring Group Sequential Designs

• Examining operating characteristics
– Stopping boundaries

• Z scale
• Conditional power under hypothesized effects
• Conditional power under current MLE
• Predictive power under flat prior

– Estimates and inference
• MLE  (Bias adjusted estimates suppressed for space)
• 95% CI properly adjusted for stopping rule
• P value properly adjusted for stopping rule

– Power at specified alternatives
– Sample size distribution (as function of true effect)

• Maximal sample size
• Average sample size
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O’Brien-Fleming Efficacy: J = 2

• Introduce two evenly spaced analyses
– Type 1 error of 0.025

• Stopping boundary table

Info
Frac

Futility Efficacy

Z CPalt CPest PPflat Z CPnull CPest PPflat

0.5 -- -- -- -- 2.796 0.500 0.997 0.976

1.0 1.977 -- -- -- 1.977 -- -- --
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O’Brien-Fleming Efficacy: J = 2, N = 1

• Introduce two evenly spaced analyses
– Maintain sample size NJ = 1

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.5 -- -- -- 3.955 (1.16, 5.72) 0.003

1.0 1.977 (0.00, 3.93) 0.025 1.977 (0.00, 3.93) 0.025
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O’Brien-Fleming Efficacy: J = 2, N = 1

• Introduce two evenly spaced analyses
– Maintain sample size NJ = 1

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.999

1.96 0.496 0.960

2.80 0.797 0.896

3.24 0.898 0.847

3.92 0.974 0.755
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O’Brien-Fleming Efficacy: J = 2, Power

• Introduce two evenly spaced analyses
– Maintain power 0.975 at alternative 3.92

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.50 -- -- -- 3.943 (1.16, 5.70) 0.003

1.01 1.977 (0.00, 3.92) 0.025 1.977 (0.00, 3.92) 0.025
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O’Brien-Fleming Efficacy: J = 2, Power

• Introduce two evenly spaced analyses
– Maintain power 0.975 at alternative 3.92

• Power and sample size table

True Effect Power Avg N

0.00 0.025 1.005

1.96 0.499 0.966

2.80 0.799 0.901

3.24 0.900 0.851

3.92 0.975 0.758
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Take Home Messages 1

• Introduction of a very conservative efficacy boundary
– Minimal effect on power even if do not increase max N
– Minimal increase in max N needed to maintain power

• Ease and importance of evaluating a stopping rule

• Even before we start the study, we can consider 
– Thresholds for early stopping in terms of estimated effects
– Inference corresponding to stopping points
– Conditional and predictive power under various hypotheses

• We can judge a stopping rule by comparing it to a fixed sample 
test and look at the tradeoffs between
– Increase in maximal sample size
– Decrease in average sample size
– Changes in unconditional power

13

14

O’Brien-Fleming Symmetric: J = 2

• Introduce two evenly spaced analyses
– Type 1 error of 0.025

• Stopping boundary table

Info
Frac

Futility Efficacy

Z CPalt CPest PPflat Z CPnull CPest PPflat

0.5 0.000 0.500 0.003 0.024 2.796 0.500 0.997 0.976

1.0 1.977 -- -- -- 1.977 -- -- --
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O’Brien-Fleming Symmetric: J = 2, N = 1

• Introduce two evenly spaced analyses
– Maintain sample size NJ = 1

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.5 0.000 (-1.76, 2.80) 0.375 3.945 (1.15, 5.71) 0.003

1.0 1.973 (0.00, 3.94) 0.025 1.973 (0.00, 3.94) 0.025
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O’Brien-Fleming Symmetric: J = 2, N = 1

• Introduce two evenly spaced analyses
– Maintain sample size NJ = 1

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.749

1.96 0.495 0.919

2.80 0.795 0.883

3.24 0.897 0.840

3.92 0.974 0.752
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O’Brien-Fleming Symmetric: J = 2, Power

• Introduce two evenly spaced analyses
– Maintain power 0.975 at alternative 3.92

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.51 0.00 (-1.75, 2.78) 0.375 3.920 (1.14, 5.67) 0.003

1.01 1.960 (0.00, 3.92) 0.025 1.960 (0.00, 3.92) 0.025
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O’Brien-Fleming Symmetric: J = 2, Power

• Introduce two evenly spaced analyses
– Maintain power 0.975 at alternative 3.92

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.758

1.96 0.500 0.930

2.80 0.800 0.893

3.24 0.900 0.848

3.92 0.975 0.758

18



2024 SISCER Module 3: RCT with Time to Event Endpoints
Lecture 20: GS Boundaries
:

July, 2024

(c) Scott S. Emerson, M.D., Ph.D. 10

19

Take Home Messages 2

• Introduction of a very conservative futility boundary

• Again, minimal effects on power and/or max N
• Dramatic improvement in ASN under the null

• Conditional and predictive power thresholds are surprising
– CPalt = 0.50 for the extremely conservative OBF boundary

• But the CI has already eliminated 3.92 with high confidence
– CPest = 0.003 and PPflat = 0.024 are both very low thresholds
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O’Brien-Fleming & Futility: J = 2

• Introduce two evenly spaced analyses
– Type 1 error of 0.025

• Stopping boundary table

Info
Frac

Futility Efficacy

Z CPalt CPest PPflat Z CPnull CPest PPflat

0.5 0.331 0.644 0.017 0.068 2.776 0.500 0.997 0.975

1.0 1.963 -- -- -- 1.963 -- -- --
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O’Brien-Fleming & Futility: J = 2, N = 1

• Introduce four evenly spaced analyses
– Maintain sample size NJ = 1

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.5 0.468 (-1.30, 3.27) 0.228 3.925 (1.13, 5.69) 0.003

1.0 1.963 (0.00, 3.98) 0.025 1.963 (0.00, 3.98) 0.025
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O’Brien-Fleming & Futility: J = 2, N = 1

• Introduce two evenly spaced analyses
– Maintain sample size NJ = 1

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.684

1.96 0.492 0.886

2.80 0.791 0.869

3.24 0.893 0.830

3.92 0.972 0.747
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O’Brien-Fleming & Futility: J = 2, Power

• Introduce two evenly spaced analyses
– Maintain power 0.975 at alternative 3.92

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.52 0.461 (-1.28, 3.22) 0.228 3.867 (1.11, 5.61) 0.003

1.03 1.934 (0.00, 3.92) 0.025 1.934 (0.00, 3.92) 0.025
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O’Brien-Fleming & Futility: J = 2, Power

• Introduce two evenly spaced analyses
– Maintain power 0.975 at alternative 3.92

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.705

1.96 0.504 0.914

2.80 0.803 0.892

3.24 0.901 0.850

3.92 0.975 0.762
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Take Home Messages 3

• More aggressive futility boundary better addresses ethical issues 
associated with ineffective drugs

• I often find that sponsors are willing to accept this futility bound 
without increasing the sample size

• But the minimal increase in maximal sample size would seem 
more appropriate to me

25
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O’Brien-Fleming & Futility: J = 4

• Introduce four evenly spaced analyses
– Type 1 error of 0.025

• Stopping boundary table

Info
Frac

Futility Efficacy

Z CPalt CPest PPflat Z CPnull CPest PPflat

0.25 -1.108 0.719 0.000 0.008 3.976 0.500 0.999 0.999

0.50 0.321 0.648 0.015 0.063 2.811 0.500 0.997 0.977

0.75 1.258 0.592 0.142 0.177 2.295 0.500 0.907 0.874

1.00 1.988 -- -- -- 1.988 -- -- --
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O’Brien-Fleming  & Futility: J = 4, N = 1

• Introduce four evenly spaced analyses
– Maintain sample size NJ = 1

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.25 -2.216 (-4.71, 1.74) 0.846 7.951 (4.00, 10.5) 0.000

0.50 0.454 (-1.60, 3.31) 0.263 3.976 (1.14, 6.04) 0.003

0.75 1.452 (-0.36, 3.85) 0.053 2.650 (0.30, 4.48) 0.013

1.00 1.988 (0.00, 4.06) 0.025 1.988 (0.00, 4.06) 0.025
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O’Brien-Fleming  & Futility: J = 4, N = 1

• Introduce four evenly spaced analyses
– Maintain sample size NJ = 1

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.580

1.96 0.478 0.783

2.80 0.776 0.761

3.24 0.882 0.723

3.92 0.966 0.650
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O’Brien-Fleming  & Futility: J = 4, Power

• Introduce four evenly spaced analyses
– Maintain power 0.975 at alternative 3.92

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.27 -2.141 (-4.55, 1.68) 0.846 7.682 (3.86, 10.1) 0.000

0.54 0.439 (-1.55, 3.20) 0.263 3.841 (1.10, 5.84) 0.003

0.80 1.403 (-0.34, 3.72) 0.053 2.561 (0.29, 4.33) 0.013

1.07 1.920 (0.00, 3.92) 0.025 1.920 (0.00, 3.92) 0.025
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O’Brien-Fleming  & Futility: J = 4, Power

• Introduce four evenly spaced analyses
– Maintain power 0.975 at alternative 3.92

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.622

1.96 0.504 0.840

2.80 0.803 0.808

3.24 0.902 0.762

3.92 0.975 0.680
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Take Home Messages 4

• Effect of adding more analyses
– Greater loss of power if maximal sample size not increased
– Greater increase in maximal sample size if power maintained
– But, improvement in average efficiency

• Can also use this example for guidance in how to judge 
thresholds for conditional and predictive power
– The same threshold should not be used at all analyses
– It is not, however, clear what threshold should be used

• I look at tradeoffs between average efficiency and power
– We can look at optimal (on average) designs for more guidance

31
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Efficient: J = 2

• Introduce two optimally spaced analyses to minimize ASN
– Type 1 error of 0.025

• Stopping boundary table

Info
Frac

Futility Efficacy

Z CPalt CPest PPflat Z CPnull CPest PPflat

0.43 0.573 0.818 0.049 0.141 2.776 0.182 0.951 0.859

1.00 2.129 -- -- -- 2.129 -- -- --
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Efficient: J = 2, Power

• Introduce two optimally spaced analyses
– Maintain power 0.975 at alternative 3.92

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.50 0.808 (-0.82, 3.58) 0.129 3.112 (0.34, 4.74) 0.014

1.18 1.960 (0.00, 3.92) 0.025 1.960 (0.00, 3.92) 0.025
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Efficient: J = 2, Power

• Introduce two optimally spaced analyses
– Maintain power 0.975 at alternative 3.92

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.685

1.96 0.500 0.900

2.80 0.805 0.847

3.24 0.904 0.788

3.92 0.975 0.685
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Take Home Messages 5

• Optimal spacing of analyses not quite equal information

• Optimal early conservatism close to a Pocock design
– In unified family, OBF has P=1, Pocock has P= 0.5
– Optimal P= .54

• With two analyses, increase maximal N by 18% over fixed sample
– ASN decreases by about one third

• Again, the thresholds to use for conditional or predictive power 
are not at all clear

• Search for best designs should include many candidates
– Examine many operating characteristics

35

Unified Family: MLE Scale

– Down columns: Early stopping vs no early stopping
– Across rows: One-sided vs two-sided decisions

36
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Unified Family: MLE Scale

• All of the rules depicted have the same type I error and power to 
detect the design alternative

37
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Impact on Sampling Density

• When using a stopping rule, the sampling density depends on 
exact stopping rule

• This is obvious from what we have already seen.

• A fixed sample test is merely a particular stopping rule:
– Gather all N subjects’ data and then stop
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Compared to Fixed Sample

• The magnitude of the effect of the stopping rule on trial design 
operating characteristics and statistical inference can vary 
substantially

• Rule of thumb:
– The more conservative the stopping rule at interim analyses, the less 

impact on the operating characteristics and statistical inference when 
compared to fixed sample designs.

39
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Reasons for Early Stopping

• Efficacy, Futility, Harm

• Ethical
– Individual

• Protect patients on study
• Protect patients who might be accrued to study

– Group
• Promote rapid discovery of new treatments

• Economic
– Avoid unnecessary costs of RCT
– Facilitate earlier marketing
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Role of Futility Boundaries

• When clinically relevant improvement has been convincingly ruled 
out and no further useful information to be gained
– (Is further study of subgroups or other endpoints still in keeping with 

informed consent?)

• Futility boundaries usually do not indicate harm

• Because most RCT do not reject the null hypothesis, the major 
savings in early stopping are through a futility boundary
– Also, not as much need for early conservatism
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Potential Issue

• Compared to a stopping rule with no futility boundary the critical 
value at the final analysis can be lower

• Some of the trials stopped early for futility might have otherwise 
been type I errors at the final analysis

• Depends on the early conservatism of the futility boundary
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Nonbinding Futility

• Some clinical trialists believe that FDA requires that the futility 
rule be ignored when making inference
– Such builds in conservatism
– True type I error is smaller than nominal
– True power is smaller than normal

• This is purposely using the wrong sampling density
– Not good statistics—game theory must be motivation

43
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Correct Inference

• The statistically correct, efficient approach is to base inference on 
the real futility boundary

• Demands correct pre-specification of the futility boundary

• Demands a clear paper trail of analyses performed
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