























| ••••••                       | Notation                                                                                                                                        |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Baseline data :              | $W_1, W_2, W_3, \dots, W_N$                                                                                                                     |
| Treatment data :             | $X_1, X_2, X_3, \dots, X_N$                                                                                                                     |
| Potential data :             | $Y_1, Y_2, Y_3, \dots, Y_N$                                                                                                                     |
| Probability model :          | $Y_i \mid X_i, W_i \stackrel{ind}{\sim} F_i$                                                                                                    |
| Target of inference:         | $\theta = \theta \left( F_1, \dots, F_N \right)$                                                                                                |
| Estimated treatment effect : | $\hat{	heta}_{\!_N}  	heta\left(\hat{F}_1,\ldots,\hat{F}_N ight) \doteq N\!\left(\!	heta,V\!\left(\!	heta ight)\!/N ight)$                      |
| Normalized test statistic :  | $Z_{N} = \frac{\hat{\theta}_{N} - \theta_{0}}{\sqrt{V(\theta_{0})/N}} \sim N\left(\frac{\theta - \theta_{0}}{\sqrt{V(\theta_{0})/N}}, 1\right)$ |
| P value:                     | $P_{\scriptscriptstyle N} = \Phiig(Z_{\scriptscriptstyle N}ig)^{H_0: 	heta=	heta_0} \dot{\sim} Uig(0,1ig)$                                      |
|                              | 13                                                                                                                                              |
|                              |                                                                                                                                                 |













| Notation: Sam                | pling Independent Groups                                                                                                                                                                                                                                                                                              |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Independent groups :         | j = 1,, J                                                                                                                                                                                                                                                                                                             |
| Baseline data :              | $W_{j1},\ldots,W_{j\widetilde{N}_j}$                                                                                                                                                                                                                                                                                  |
| Treatment data :             | $X_{j1},\ldots,X_{j\widetilde{N}_j}$                                                                                                                                                                                                                                                                                  |
| Potential data :             | $Y_{j1},\ldots,Y_{j\widetilde{N}_j}$                                                                                                                                                                                                                                                                                  |
| Probability model:           | $Y_{ji} \mid X_{ji}, W_{ji} \stackrel{ind}{\sim} F_{ji}$                                                                                                                                                                                                                                                              |
| Target of inference:         | $\widetilde{	heta}_{j}=~\widetilde{	heta}_{j}\Big(\!F_{j1},\ldots,F_{j\widetilde{N}_{j}}\Big)$                                                                                                                                                                                                                        |
| Estimated treatment effect : | $\hat{\widetilde{	heta}}_{_{j\widetilde{N}_{j}}} = \widetilde{	heta}_{j} \Big( \hat{F}_{_{j1}}, \dots, \hat{F}_{_{j\widetilde{N}_{j}}} \Big) \doteq N \Big( \widetilde{	heta}_{j}, V_{_{j}} \Big( \widetilde{	heta}_{j} \Big) / \widetilde{	heta}_{j} \Big)$                                                          |
| Normalized test statistic :  | $\widetilde{Z}_{j\widetilde{N}_{j}} = \frac{\hat{\widetilde{\theta}}_{j\widetilde{N}_{j}} - \widetilde{\theta}_{j0}}{\sqrt{V_{j}(\widetilde{\theta}_{j0})/\widetilde{N}_{j}}} \sim N\left(\frac{\widetilde{\theta}_{j} - \widetilde{\theta}_{j0}}{\sqrt{V_{j}(\widetilde{\theta}_{j0})/\widetilde{N}_{j}}}, 1\right)$ |
| P value:                     | $\widetilde{P}_{j\widetilde{N}_{j}} = \Phi\left(\widetilde{Z}_{j\widetilde{N}_{j}}\right)^{H_{j0}:\widetilde{\theta}_{j}=\widetilde{\theta}_{j0}} U(0,1) $ 20                                                                                                                                                         |



| Notation: Gro               | oup Sequential Designs                                                                                                      |    |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------|----|
| A common treatment effe     | ct across groups                                                                                                            |    |
| Group size independent of   | of prior estimates of treatment effec                                                                                       | rt |
| Prespecified (rule for)     | $N_1, N_2,, N_J$                                                                                                            |    |
| Potential data :            | $Y_1, Y_2, Y_3, \dots, Y_{N_J}$                                                                                             |    |
| Probability model:          | $Y_i \stackrel{iid}{\sim} ig(	heta, Vig)$                                                                                   |    |
| Interim estimates :         | $\hat{	heta}_{N_i} = \hat{	heta} (Y_1, \dots, Y_{N_i})$                                                                     |    |
| Without sequential sampling | :                                                                                                                           |    |
| Approximate distn :         | $\hat{\boldsymbol{\theta}}_{j} = \hat{\boldsymbol{\theta}}_{N_{j}} \stackrel{\sim}{\sim} N(\boldsymbol{\theta}, V / N_{j})$ |    |
| Indep increments :          | $Cov(\hat{\theta}_{N_{j}}, \hat{\theta}_{N_{j+1}}) = V / N_{j+1}$                                                           |    |
| Interim test statistics :   | $Z_{j} = Z_{N_{j}} = \frac{\hat{\theta}_{j} - \theta_{0}}{\sqrt{V / N_{j}}}$                                                | 22 |





## 2024 SISCER Module 3: RCT with Time to Event Endpoints Lecture 28: Adaptive RCT with Time to Event Endpoints



































 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{Approaches for Testing} \\ \mbox{$\widehat{N}_{2}^{*} = \widetilde{N}_{2}^{*}(\widetilde{Z}_{1}) $ & $\widetilde{Z}_{2}^{*}$ incremental statistic with revised $\widetilde{N}_{2}^{*}$ \\ \hline $\widetilde{N}_{2}^{*} = \widetilde{N}_{2}^{*}(\widetilde{Z}_{1}) $ & $\widetilde{Z}_{2}^{*}$ incremental statistic with revised $\widetilde{N}_{2}^{*}$ \\ \hline $Z_{2}^{*} = \sqrt{\frac{\widetilde{N}_{1}}{N_{2}}}\widetilde{Z}_{1}^{*} + \sqrt{\frac{\widetilde{N}_{2}}{N_{2}}}\widetilde{Z}_{2}^{*} & $N(0,1)$ \\ \mbox{$\widehat{N}(0,1)$ \\ \mbox{$\widehat{N}$ 















| e V. C | perating Charac | teristics of the Fixed S<br>Ou | Sample and<br>itcome | l Adaptive Desig | ns, Cond | itional on I |
|--------|-----------------|--------------------------------|----------------------|------------------|----------|--------------|
|        | Π               | D 1 1 11                       | D                    | 1.1.1.1          | D        |              |
|        | Testanian       | Probability                    | Power C              | onditional on    | Expected |              |
| 2      | Outcome         | 01<br>Interim Outcome          | Fined                | Adaptiva         | Sam      | pie Size     |
| 0      | Ultcome         |                                | Fixed                | Adaptive         | r ixed   | Adaptiv      |
| 1.0    | Deservision     | 30%                            | 30%                  | 30%              | 442      | 442          |
| 1.0    | Promising       | 23%                            | 02%                  | 82%              | 442      | 087          |
|        | Favorable       | 41%                            | 81%                  | 81%              | 442      | 442          |
| 1 -    | Uniavorable     | 32%                            | 34%                  | 34%              | 442      | 442          |
| 1.7    | Promising       | 23%                            | 67%                  | 85%              | 442      | 685          |
|        | Favorable       | 45%                            | 89%                  | 89%              | 442      | 442          |
|        | Unfavorable     | 29%                            | 38%                  | 38%              | 442      | 442          |
| 1.8    | Promising       | 23%                            | 70%                  | 88%              | 442      | 682          |
|        | Favorable       | 49%                            | 91%                  | 91%              | 442      | 442          |
|        | Unfavorable     | 26%                            | 43%                  | 43%              | 442      | 442          |
| 1.9    | Promising       | 22%                            | 74%                  | 90%              | 442      | 679          |
|        | Favorable       | 52%                            | 93%                  | 93%              | 442      | 442          |
|        | Unfavorable     | 23%                            | 47%                  | 47%              | 442      | 442          |
| 2.0    | Promising       | 21%                            | 77%                  | 92%              | 442      | 678          |
|        | Favorable       | 56%                            | 95%                  | 95%              | 442      | 442          |











|         | Ta           | ble 1: Com     | parison of I   | RCT Design     | is for Exam    | ple 1          |              |
|---------|--------------|----------------|----------------|----------------|----------------|----------------|--------------|
|         |              |                | Hypoth         | esized Treati  | ment Effect    |                |              |
| Design  | $\delta = 0$ | $\delta = 1.5$ | $\delta = 1.6$ | $\delta = 1.7$ | $\delta = 1.8$ | $\delta = 1.9$ | $\delta=2.0$ |
|         |              |                | Р              | ower           |                |                |              |
| Fxd442  | 2.5%         | 55.6%          | 61.1%          | 66.3%          | 71.3%          | 75.9%          | 80.0%        |
| Fxd690  | 2.5%         | 74.8%          | 80.0%          | 84.5%          | 88.3%          | 91.4%          | 93.9%        |
| GST694  | 2.5%         | 74.8%          | 80.0%          | 84.6%          | 88.4%          | 91.4%          | 93.9%        |
| Adapt . | 2.5%         | 60.4%          | 65.8%          | 70.8%          | 75.4%          | 79.6%          | 83.4%        |
| Fxd492  | 2.5%         | 60.2%          | 65.8%          | 71.0%          | 75.9%          | 80.2%          | 84.1%        |
| Fut492  | 2.5%         | 59.8%          | 65.4%          | 70.6%          | 75.4%          | 79.8%          | 83.7%        |
| OBF492  | 2.5%         | 59.6%          | 65.2%          | 70.4%          | 75.3%          | 79.6%          | 83.5%        |
|         |              |                | Expected N     | umber Accrue   | ed             |                |              |
| Fxd442  | 442          | 442            | 442            | 442            | 442            | 442            | 442          |
| Fxd690  | 690          | 690            | 690            | 690            | 690            | 690            | 690          |
| GST694  | 694          | 681            | 678            | 675            | 671            | 667            | 662          |
| Adapt   | 464          | 496            | 495            | 494            | 492            | 490            | 488          |
| Fxd492  | 492          | 492            | 492            | 492            | 492            | 492            | 492          |
| Fut492  | 468          | 488            | 489            | 490            | 490            | 490            | 491          |
| OBF492  | 467          | 485            | 485            | 485            | 485            | 484            | 484          |

|         | Ta           | ble 1: Com     | parison of I   | RCT Design     | s for Exam     | ple 1          |                |
|---------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|
|         |              |                | Hypoth         | esized Treati  | nent Effect    |                |                |
| Design  | $\delta = 0$ | $\delta = 1.5$ | $\delta = 1.6$ | $\delta = 1.7$ | $\delta = 1.8$ | $\delta = 1.9$ | $\delta = 2.0$ |
|         |              | ]              | Expected Nu    | mber Comple    | eted           |                |                |
| Fxd442  | 442          | 442            | 442            | 442            | 442            | 442            | 442            |
| Fxd690  | 690          | 690            | 690            | 690            | 690            | 690            | 690            |
| GST694  | 693          | 668            | 663            | 657            | 649            | 641            | 632            |
| Adapt   | 464          | 496            | 495            | 494            | 492            | 490            | 488            |
| Fxd492  | 492          | 492            | 492            | 492            | 492            | 492            | 492            |
| Fut492  | 353          | 472            | 475            | 478            | 481            | 483            | 485            |
| OBF492  | 352          | 455            | 455            | 454            | 452            | 449            | 445            |
|         |              | Ex             | pected Calen   | dar Time (m    | onths)         |                |                |
| Fxd442  | 18.8         | 18.8           | 18.8           | 18.8           | 18.8           | 18.8           | 18.8           |
| Fxd690  | 25.9         | 25.9           | 25.9           | 25.9           | 25.9           | 25.9           | 25.9           |
| GST694  | 26.0         | 25.3           | 25.1           | 24.9           | 24.7           | 24.5           | 24.2           |
| Adapt   | 19.4         | 20.3           | 20.3           | 20.3           | 20.2           | 20.1           | 20.1           |
| Fxd492  | 20.2         | 20.2           | 20.2           | 20.2           | 20.2           | 20.2           | 20.2           |
| Fut 492 | 16.2         | 19.6           | 19.7           | 19.8           | 19.9           | 19.9           | 20.0           |
| OBF492  | 16.1         | 19.1           | 19.1           | 19.1           | 19.0           | 19.0           | 18.8           |

























| Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CLINICAL<br>TRIALS                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evaluating group-sequential<br>non-inferiority clinical trials following<br>interim stopping: The HIV Prevention<br>Trials Network 083 trial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cited Tries<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                 |
| Brett S Hanscom <sup>1</sup> , Deborah J Donnell <sup>1</sup> , Thomas R Flemin<br>James P Hughes <sup>1,2</sup> , Marybeth McCauley <sup>3</sup> , Beatriz Grinsztejn <sup>4</sup> ,<br>Raphael J Landovitz <sup>5</sup> and Scott S Emerson <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g <sup>2</sup> ,                                                                                                                                                                                                                                                                                                              |
| Abstract<br>Background/Aims: The HIV Prevention Trials Network 083 trial was a group-seq<br>to compare HIV incidence under a novel experimental regimen for HIV prevention,<br>with an active-control regimen of daily oral tenofovir disoproxil fumarate/emtricitabi<br>of 2020, just sa the trial had completed enrollment, the COVID-19 pandemic thre<br>from attending study visits and obtaining study medication, motivating the study tear<br>plan. The Data and Safety Monitoring Board subsequently stopped the trial at the firs<br>evidence of efficacy.<br>Methods: Here we describe some unique aspects of the trial's design, monitoring, and<br>vate the importance of computing point estimates, confidence intervals, and p values | uential non-inferiority trial designed<br>, long-acting injectable cabotegravir,<br>ne (brand name Truvada). In March<br>atened to prevent trial participants<br>m to update the interim monitoring<br>t interim review due to strong early<br>nalysis, and interpretation. We illus-<br>s based on the sampling distribution |
| induced by sequential monitoring.<br><b>Results:</b> Accurate analysis, decision-making and interpretation of trial results rely<br>boundary, including the scale on which the stopping rule will be implemented, the sp<br>and how the boundary will be adjusted if the available information for attains at larger                                                                                                                                                                                                                                                                                                                                                                                                                                | on pre-specification of a stopping<br>ecific test statistics to be calculated,<br>m review is different from planned.                                                                                                                                                                                                         |







































|                                                        |                                                 | 5                                               | Simu                                           | latior                                | IS                                                         |                                 |                                           |          |
|--------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------|------------------------------------------------------------|---------------------------------|-------------------------------------------|----------|
|                                                        |                                                 |                                                 |                                                |                                       | •••••                                                      |                                 | •                                         |          |
|                                                        |                                                 |                                                 |                                                |                                       |                                                            |                                 |                                           |          |
|                                                        |                                                 |                                                 |                                                |                                       |                                                            |                                 |                                           |          |
|                                                        |                                                 | HR-0                                            | $5 \cdot \lambda / A$                          |                                       |                                                            | HR-0.6                          | 343. 2/2                                  |          |
|                                                        | Continue                                        |                                                 | Restart                                        |                                       | Continue                                                   |                                 | Restart                                   |          |
|                                                        | Pres                                            | Cond                                            | Pres                                           | Cond                                  | Pres                                                       | Cond                            | Pres                                      | Cond     |
| 1750                                                   | 68.69                                           | -                                               | 68.69                                          | -                                     | 67.55                                                      | -                               | 67.55                                     | -        |
| 3500                                                   | 90.08                                           | -                                               | 80.27                                          | -                                     | 88.40                                                      | -                               | 79.47                                     | -        |
| Fully Blinded <sup>‡</sup>                             | 90.08                                           | 89.72                                           | 80.27                                          | 76.88                                 | 87.61                                                      | 87.60                           | 79.47                                     | 79.51    |
| Avg Rate (80%)                                         | 86.33                                           | 85.74                                           | 78.27                                          | 73.91                                 | 84.63                                                      | 84.59                           | 77.55                                     | 77.36    |
| Rate Diff (80%)                                        | 88.09                                           | 86.52                                           | 80.27                                          | 75.25                                 | 86.21                                                      | 85.69                           | 79.31                                     | 78.84    |
| HR (80%)                                               | 87.55                                           | 86.31                                           | 80.10                                          | 75.07                                 | 86.10                                                      | 85.58                           | 79.35                                     | 78.77    |
| GSD (fully<br>prespecified<br>However, w<br>adjustment | blindec<br><i>l adapt</i><br>/hen int<br>s have | l proce<br><i>ive des</i><br>tegrity<br>to be ι | dures)<br><i>ign</i> in o<br>of the<br>used (C | almost<br>context<br>trial m<br>.HW), | efficient<br>of $\lambda_{\mathrm{Tr}}$<br>ay be over lose | nt to the<br>South <7<br>compro | ne best<br>\ <sub>Planne</sub><br>mised a | d<br>and |
| <ul> <li>The ineffici<br/>of power part</li> </ul>     | ent wei<br>articula                             | ighting<br>rly witł                             | schem<br>1 late a                              | e of Cl<br>Idaptat                    | HW res<br>ions.                                            | ults in                         | substa                                    | ntial lo |



















## 2024 SISCER Module 3: RCT with Time to Event Endpoints Lecture 28: Adaptive RCT with Time to Event Endpoints



99







| Table 2           Average rejection rates for 11 tests adjusted using ANOVA for<br>censoring pattern. Rejection rates given by scenario using<br>model (12). The last two rows refer to the log-rank (LR) test<br>and weighted log-rank (WLR) tests starting at time 0. $t_0 = 24$ . |          |              |              |              |             |      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|--------------|--------------|-------------|------|--|
|                                                                                                                                                                                                                                                                                      |          | Scenario     |              |              |             |      |  |
| Method                                                                                                                                                                                                                                                                               | Equation | Е            | F            | G            | Н           | Ι    |  |
| $Z_{\text{CLL}}(24)$                                                                                                                                                                                                                                                                 | (1)      | 62.4         | 15.3         | 21.1         | 4.7         | 21.8 |  |
| $Z_{\text{CLL}}(48)$                                                                                                                                                                                                                                                                 | (1)      | 70.1         | 32.9         | 65.1         | 21.5        | 6.8  |  |
| $Z_{\text{CLL}}(72)$                                                                                                                                                                                                                                                                 | (1)      | 71.2         | 44.5         | 85.1         | 46.1        | 25.9 |  |
| $Z_{\rm WKM}(t_0)$                                                                                                                                                                                                                                                                   | (2)      | 75.8         | 35.0         | 66.3         | 20.3        | 6.0  |  |
| $\chi^2_{\rm PSV}(t_0)$                                                                                                                                                                                                                                                              | (3)      | 74.8         | 32.0         | 61.2         | 16.4        | 4.8  |  |
| $Z_{\rm LR}(t_0)$                                                                                                                                                                                                                                                                    | (4)      | 30.7         | 36.5         | 85.4         | 71.7        | 82.6 |  |
| $Z_{OLS}(t_0)$                                                                                                                                                                                                                                                                       | (5)      | 74.7         | 43.9         | 84.1         | 43.4        | 23.6 |  |
| 7 11                                                                                                                                                                                                                                                                                 | (6)      | 76.9         | 40.2         | 74.8         | 29.6        | 10.7 |  |
| $Z_{SP,P}(t_0)$                                                                                                                                                                                                                                                                      |          |              |              |              |             | 01.0 |  |
| $\frac{Z_{SP,P}(t_0)}{\chi^2(t_0)}$                                                                                                                                                                                                                                                  | (7)      | 67.2         | 36.7         | 83.1         | 61.1        | 81.0 |  |
| $\frac{\sum_{\text{sp,p}}(t_0)}{\chi^2(t_0)}$<br>Log rank                                                                                                                                                                                                                            | (7)      | 67.2<br>78.0 | 36.7<br>28.9 | 83.1<br>47.0 | 61.1<br>8.6 | 22.2 |  |











































