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Introduction 

Analyses of clinical trials with time-to-event endpoints typically employ the assumption of non-

informative censoring.  While this assumption is usually appropriate for end-of-study (EOS) 

censoring, its applicability to lost-to-follow-up (LTFU) censoring is often suspect and may result 

in biased estimates of the treatment effect.  To assess the robustness of estimates to departures 

from non-informative censoring, authors [1][2] have proposed sensitivity analyses that assume a 

semiparametric model for the censoring mechanism, with the parameters representing 

associations between censoring and increased or decreased rates of survival.  The parameters are 

varied over a plausible range resulting in a corresponding range of estimates for the treatment 

effect.  We consider such an approach for two-arm trials in which the sensitivity parameters 

represent hazard ratios within a proportional hazards model with a time varying covariate 

comparing subjects who have been lost to follow-up to all other subjects.  Using hypothesized 

hazard ratios for each arm separately, we multiply impute the unobserved data as it might have 

been observed in the absence of informative censoring.  The treatment effect estimates computed 

using the imputed data are then summarized in a graphical display.   

Of particular interest in this research is the robustness of our approach to violations of the 

proportional hazards assumptions used when imputing the missing data.  On the basis of 
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extensive simulation studies, we find that the accuracy of the sensitivity analyses are relatively 

unaffected by departures from the semiparametric assumptions. 

The remainder of the thesis is outlined as follows.  In Chapter 1, we discuss censoring, the 

problem of non-identifiability, and methods authors have proposed to address informative 

censoring.  In Chapter 2, we describe an imputation-based sensitivity analysis for two-arm trials.  

In the next two chapters, we explore the performance of the imputation method when the 

assumption regarding the proportionality of hazards between LTFU-censored subjects and all 

other subjects is correct (Chapter 3) and incorrect (Chapter 4).  We conclude with a discussion of 

the results, possible extensions to the method, and some thoughts about the use of sensitivity 

analyses in the evaluation of clinical trials. 
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Chapter 1 

Background 

Clinical trial investigators are often interested in estimating the difference in the time to some 

event, such as death, between subjects randomly assigned to different treatments. The time-to-

event is defined as the difference between a well-defined start time, often the time of 

randomization, and a well-defined end time (e.g. death).  If all the subjects were to experience 

the event, analysts could simply test for differences in the mean time-to-event between treatment 

groups using a standard method such as the t test.  However, it is rarely feasible to wait until all 

participants have experienced the event to carry out the analysis.  Instead, analysis typically 

occurs after a planned number of subjects have experienced the event or a planned number of 

subjects have been followed up for a specified period of time.  In either case, there are nearly 

always subjects for whom the time-to-event is not known at analysis time.  Furthermore, there 

are often subjects who drop out of the trial before experiencing the event of interest and it may 

not be possible to learn anything more about their time-to-event.  

Subjects for whom time-to-event is not fully known are said to be censored.  Censoring can be 

divided into two mechanisms, point and interval [3].  Point censoring occurs when either the 

start or end time of the time-to-event definition is not known precisely but rather can only be 

bounded in one direction.  In clinical trials, the start time is almost always known for all subjects, 

thus point censoring usually arises because the end time is known only to exceed some value.  
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This type of point censoring is referred to as right censoring since when plotted on a horizontal 

timeline a subject’s follow-up time begins on the left and ends on the right.  Subjects whose start 

time is known only to have occurred by a certain time are said to be left censored and those with 

both left and right censoring are said to be doubly censored. 

Interval censoring occurs when the time-to-event is known to be within an interval.  This may 

occur, for example, in trials in which periodic examinations are conducted to assess disease 

progression.  If progression is first noted at a given examination, it is only known that 

progression occurred between the last examination and the present one. 

In the remainder of this paper we will restrict our attention to right censoring, the most common 

type in clinical trials. Unless otherwise specified, any discussion of censoring will refer to this 

type. 

Censoring can be broadly separated into two types: end-of-study (EOS) and lost-to-follow-up 

(LTFU).  EOS censoring, also referred to as administrative censoring, occurs when it is known 

that a subject has not experienced the event by the time planned follow-up ends.   

LTFU censoring, in our broad categorization, includes all other types of censoring.  The causes 

of it for a given subject may or may not be known.  Subjects may drop out because they perceive 

the trial to be too burdensome or because they feel better, perhaps due to the treatment.  They 

may move out of the area and be unreachable or be unable to continue treatment because it is not 

available in their new location. They may experience treatment-related events such as drug 

toxicity or intolerance or they may find that the study medication is ineffective. 
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An important consideration, particularly when there is significant censoring of outcomes, is 

whether the censoring is likely to be informative for survival. In other words, does the event time 

for subjects who have not experienced the event by time t depends on when follow-up ends?  If it 

does not, we say that censoring is non-informative.  Unfortunately, there is often nothing in our 

data to help us determine whether censoring is informative, because the data we need to 

determine dependence, the event time, is unknown for censored subjects. 

If we consider it unlikely that the timing of study recruitment is related to time-to-event, then it is 

reasonable to assume that EOS censoring is not informative.  Examples of situations where this 

assumption may not hold include trials in which entry criteria are altered over time (so a different 

mix of patients are enrolled at different points in time) and trials for which the efficacy of the 

treatment is subject to variation over time (e.g. if practitioners become more skilled with a new 

surgical procedure the more they perform it). 

Many types of LTFU censoring are likely to be informative.  For example, a subject’s health may 

deteriorate, and the subject may conclude that the study medication is not working.  The subject 

may then decide to drop out of the trial.  We might expect such subjects to have shorter residual 

survival times than those subjects who remain in the trial.  On the other hand, a subject may feel 

better, decide she no longer needs the study medication, and then drop out of the trial.  We might 

expect such subjects to have longer residual survival times than those who remain under 

observation. 
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LTFU rates can vary widely.  In cancer trials, for example, rates are commonly in the 5 to 10 

percent range, whereas in some HIV/AIDS trials the rate has been significantly higher.  It is not 

uncommon for trials of antipsychotic medication to have a dropout rate exceeding 50 percent. 

The techniques used to analyze censored time-to-event data are generally referred to as survival 

analysis methods.  In the typical analytical framework, we define random variables T and C as 

the event time and censoring time, respectively.  We are interested in estimating the distribution 

of T, but what we observe is Y = min(T, C) and δ = I(T ≤ C) where I(.) is a function that indicates 

whether the event was observed or not.  The data (Y, δ) are insufficient to determine the joint 

distribution of (T, C).  Tsiatis [4] proved that in addition to a model in which T and C are 

independent, there exist one or more models where T and C are dependent that would tend to 

yield the same observed data.  This has come to be known as the non-identifiability problem. 

The typical solution to this problem is to assume censoring is non-informative.  Under this 

assumption, the likelihood contribution of an event is: 

 Pr[T = yi, C > yi] = (1-G(yi)) f(yi)        (1) 

where G is the censoring distribution function and f is the time-to-event density.  The likelihood 

contribution of a censored observation is: 

Pr[C = yi, T > yi] = (1-F(yi)) g(yi)        (2) 

where F is the time-to-event distribution function and g is the censoring density.  The survival  
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function S is often used in place of 1-F.  The likelihood can be written as: 

L  =  ∏  [(1-G(yi)) f(yi)]
δi [S(yi) g(yi)]

1-δi       (3) 

If the distribution of C does not depend on the parameters of the distribution of T, the terms 

(1-G(yi))δi and g(yi)1-δi can be factored out such that: 

L  ∝  ∏  f(yi)
δi S(yi)

1-δi .        (4) 

This is the usual likelihood employed for the estimation of the survival function. 

Partial likelihood-based approaches are the mainstay of the analysis of clinical trial time-to-event 

data.  The typical analysis involves estimation of treatment-specific survival functions using the 

method of Kaplan and Meier [5], testing the hypothesis of no difference in the functions with the 

log rank test [6], and estimating the treatment effect, or hazard ratio, using the Cox proportional 

hazards model [7].  The assumption of non-informative censoring is invariably invoked for all 

these methods in the primary analyses of trial data.  However, the assumption is often suspect for 

LTFU censoring.   

In their 1958 paper introducing the product-limit estimator, Kaplan and Meier noted that the 

assumption of independence between censoring and survival times “deserves special scrutiny”.  

Many authors since then have showed that informatively censored observations can bias 

estimates of the survival function [8].  Peterson [9] gave sharp bounds on the marginal survival 

function without making further assumptions about the association between survival and 

censoring.  However, in most situations these bounds are considered too wide for practical use. 
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We can conceptualize informative censoring as being composed of a part that can be explained 

by measured factors that are prognostic for both censoring and survival and the remaining part 

that is not explained by measured factors.  When all the factors prognostic for both censoring and 

survival are available, Robins [10] proved that the marginal survival function is identifiable and 

Robins and colleagues [11][12][13] proposed methods for estimating the function. 

The general approach taken when there are no measured prognostic factors is to model the 

association between censoring and survival.  The parameters of the models, which correspond to 

the degree of association, are varied over a plausible range and the resulting estimates are used to 

place bounds on the survival function.  Fisher and Kanarek [14] considered such a model. They 

assumed that being lost to follow-up occurs simultaneously with an event that alters survival by 

an amount associated with a scale parameter α.  In their model, when α = 1, censoring has no 

effect on survival, while α < 1 contracts survival and α > 1 stretches it by α(t-c), where t-c is the 

survival time following the censoring event.  Lagakos and Williams [15] considered a model 

with an exponential survival function, an unspecified function c(y) that measures the relative 

odds of observing a failure at y = min(t,c), and a parameter θ that corresponds with the degree of 

association between censoring and survival with 0 indicating death immediately following 

censoring and 1 indicating non-informative censoring. Slud and Rubinstein [16] introduced a 

known function ρ(t) specifying the hazard ratio between censored and uncensored subjects over 

time and showed how to calculate bounds on the survival function given bounds on ρ(t).  Klein 

and Moeschberger [17] took a similar approach with a fixed parameter (θ) representing the 

hazard ratio comparing the censored to uncensored.  They demonstrated the relationship between 

this parameter and Kendall’s coefficient of concordance (τ) and discussed the use of that measure 
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to specify the plausible range of association between censoring and survival.  Zheng and Klein 

[18] showed that a known copula defining the dependence between censoring and survival is 

sufficient to identify the marginal survival function.  The copula is chosen to be monotone in a 

given parameter and bounds for the survival function are estimated by varying the parameter 

over a range. 

Scharfstein, Robins, Rotnitzky, and colleagues [1][2][19] developed methods to adjust for 

measured factors prognostic for both censoring and survival while simultaneously measuring the 

sensitivity of estimates to assumptions about the residual dependency between censoring and 

survival due to unmeasured factors.  The most recent of these papers accommodates multiple 

competing censoring mechanisms with differing degrees of association with survival.  The 

cause-specific censoring mechanisms are modeled with censoring bias functions which require 

the specification of two parameters. The parameter α is interpreted as the log hazard ratio of 

dropping out at time t between subjects who are at risk at time t and have the same covariate 

history, but who differ by one unit in their ultimate time-to-event. The parameter β represents the 

mean time to event for subjects who do not experience the event prior to the maximum potential 

follow-up time. 

Siannis and colleagues [20] evaluated the sensitivity of inferences to small departures from non-

informative censoring in what can be called a local sensitivity analysis.  Their method assumes a 

parametric model which allows for dependence between censoring and survival in terms of a 

parameter δ, which can be interpreted in terms of a correlation coefficient between the two 

mechanisms, and a bias function.  Along similar lines, Zhang and Heitjan [21] derived an index 
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of local sensitivity to nonignorability (INSI) for a general parametric model of survival and 

censoring.  Liu and Heitjan [22] extended this work to a nonparametric survival model. 

Despite the extensive literature addressing the problem of informative censoring, sensitivity 

analyses evaluating the sensitivity of inference to departures from non-informative censoring are 

rarely presented in regulatory submissions or publications.  This may be because, in a setting 

where analysis methods need to be pre-specified, analysts are concerned that the simpler 

methods may not provide accurate inference and the more complex methods are too difficult to 

specify without knowledge of the data.  In addition, few, if any, of the methods are implemented 

in readily available software. 
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Chapter 2 

A Sensitivity Analysis 

In this section, we consider a two-parameter sensitivity analysis for two-arm trials. Its end 

product is a single figure that presents estimated treatment effect under a wide range of 

assumptions regarding treatment-specific hazard ratios comparing informatively censored 

subjects to all other subjects. 

Our method pertains to the situation in which all censoring can be divided into one of two types: 

end-of-study (EOS) or lost-to-follow-up (LTFU).  For each treatment arm, we further assume 

that EOS censoring is non-informative and that LTFU censoring is potentially informative. 

Our approach is similar to the method of Fisher and Kanarek [14] in that we assume a survival-

altering event simultaneous with censoring, but our α parameter represents the hazard ratio 

comparing LTFU-censored subjects to all other subjects. Thus, α > 1 tends to decrease survival 

and α < 1 tends to increase survival, relative to the assumption of non-informative censoring, 

while α = 1 represents the assumption of non-informative censoring. 

As described in the previous section, there are many different causes that result in subjects being 

lost to follow-up.  Each may have a different degree of association with subsequent survival.  A 

key assumption of our approach is that all the different causes can be summarized by some sort 
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of an “average” association.  Furthermore, we assume that decision makers can specify a 

plausible range of values for this association. 

The “average” association, which we call the censoring adjustment factor (CAF), is treatment-

specific.  For simplicity of exposition, we assume a trial with “treatment” and “control” arms and 

refer to their CAFs as αt and αc.  When not referring to a particular treatment arm, α is used 

without subscript. 

For a given scenario (i.e. combination of αt and αc), we estimate the treatment effect and its 

variance through multiple imputation. We do not impute event times for every censored subject, 

but rather we seek to effectively “remove” informative censoring. The resulting dataset can be 

viewed as the answer to the question: “What would the data look like if there were no patients 

lost to follow-up in this trial?” 

For each iteration of a scenario, we “remove” informative censoring from the data by assigning 

to each LTFU-censored subject, the minimum of (1) the time the subject would have been EOS 

censored and (2) the LTFU censoring time plus a residual survival time that is imputed using the 

relevant CAF.  It is important to note that by taking the minimum here we do not impute survival 

times beyond the support of the observed data.  Thus the method can be applied to situations in 

which the whole survival curve is not fully identified. 

The residual survival time is imputed from a distribution derived from the Nelson-Aalen estimate 

of the cumulative hazard function.  The cumulative hazard function under the assumption of  
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informative censoring is as follows: 

ΛI(t) = I(t ≤ c) ΛN(t) + I(t > c) {ΛN(c) + α [ΛN(t) – ΛN(c)]}    (5) 

where t is time, c is the LTFU censoring time, I(.) is an indicator function that equals 1 if its 

argument is true and 0 otherwise, α is the censoring adjustment factor, and ΛN(.) is the estimated 

cumulative hazard function under the assumption of no informative censoring. The subscript N is 

used here and elsewhere to indicate a function or coefficient that is estimated under the 

assumption of no informative censoring. We will sometimes refer to such estimates as naïve 

estimates. 

The cumulative failure distribution under informative censoring is  

FI(t) = 1 – exp[-ΛI(t)]         (6) 

and the survival time for an informatively censored subject is imputed as follows: 

 tI = FI
-1(U[FI(c), 1])         (7) 

where FI
-1(.) is the inverse of FI(.) and U[a, b] is a randomly generated number from the 

uniform distribution with range [a, b]. 

After all subjects with LTFU censoring have been assigned the minimum of their imputed 

survival time and EOS censoring time, we estimate the treatment effect θi and its variance vi for 

the i-th imputation iteration using Cox proportional hazards regression. The process is repeated I 
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times for a given scenario. The estimated scenario-specific treatment effect and its variance 

based on the multiple imputations are listed below [23]. 

θs = mean(θi),  vs = mean(vi) + (I+1)/I var(θi)     (8) 

The treatment effect and variance are estimated under a wide range of scenarios covering 

plausible values of αt and αc. 

We now illustrate the method with the hypothetical example of a randomized trial with 

“treatment” and “control” arms, each with 200 enrolled subjects, and a primary endpoint of 

overall survival.  The recruitment rate is assumed to be constant throughout 24 months and 

follow-up continues for 12 months following the end of recruitment.  Thus, with the exception of 

early deaths and dropouts, subjects are followed up for a minimum of 12 months.  Analysis is 

assumed to occur 36 months after the beginning of the trial.   

Trial data are generated by simulating three times for each subject: lost-to-follow up, end-of-

study, and survival.  For the exploration of the robustness of our methods we find it convenient 

to generate the two censoring times independently and to specify the survival time as conditional 

on the LTFU censoring time.  The observed data are the minimum of the three times and an 

indication of which time was the minimum.  LTFU times are generated from a Weibull 

distribution with treatment-specific scale and shape parameters σ and w.  Survival times are 

conditioned on the LTFU times and are generated by 

  s = FE
-1(U[0,1])         (9) 
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where FE
-1(.) is the inverse of an estimated cumulative failure distribution specific to the 

subject’s LTFU time, and U[0,1] is a randomly generated number from the uniform distribution 

with range [0,1].  We estimate the cumulative failure distribution by: 

 FE = 1-exp[-ΛE(t)]          (10) 

where ΛE(t) is the cumulative hazard function arrived at by numerically integrating from 0 to t 

over the hazard function: 

 hE(t) = I(t ≤ C) hw(β, k, t) + I(t > C) [α hw(β, k, t)]     (11) 

where I(.) is the indicator function, t is time, C is the random variable for LTFU time, α is the 

true censoring adjustment factor, and hw(β, k, t) is the Weibull hazard function with treatment-

specific scale (β) and shape (k) parameters.  EOS times are independent of both LTFU and 

survival times and are generated from the uniform distribution where a is the minimum follow-

up time and b is the maximum follow-up time. 

Our example uses the following parameter values for the control and treatment arms. 

Table 1. Parameters of example survival and LTFU censoring distributions 

Control Treatment 

  

σc = 130 months σt  = 190 months 

wc = 1.1 wt = 0.7 

βc  = 15 months βt  = 20 months 

kc  = 1.0 kt  = 1.0 

The EOS censoring parameters are the same for each arm: a =12 months and b = 36 months. 
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Figure 1. Theoretical hazards and cumulative failure distributions for hypothetical subject 

An example of the data generation for one subject may help to further clarify the process. Let us 

suppose that in generating the trial data, one subject had an LTFU censoring time of 12 months 

and an EOS censoring time of 27 months1.  The theoretical hazard and the related cumulative 

failure distribution used to generate the survival time for such a subject are presented in Figure 1.  

Curves are shown for two different assumptions: no informative censoring (α = 1) and a doubling 

of the hazard after LTFU censoring (α = 2).  Note that the hazards are the same under both 

assumptions prior to the point of LTFU censoring.  Assuming that the informative censoring 

assumption (α = 2) is in fact true, the survival time generated for the subject depends upon the 

LTFU time and a randomly generated number from the U[0, 1] distribution, which we will call 

u.  The simulated survival time is the time  that corresponds to a cumulative failure probability of 

u.  When u ≤ 0.41, an event time is observed; otherwise, the subject is observed to be lost to 

follow-up at 12 months.  The cutoff of 0.41 corresponds with the LTFU censoring time of  

                                                            
1 The subject was simulated to have a maximum follow-up of 27 months. In other words the subject was recruited 9 
months after the beginning of the study at which time there were 27 months before analysis time. 
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Figure 2. Cumulative failure distributions used for imputing survival 

12 months in the cumulative failure distribution. 

If the observed data turned out to be LTFU censoring at 12 months, the survival time for this 

subject would be imputed for the sensitivity analysis.  Figure 2 shows an example of the 

cumulative failure plots on which this imputation would be based overlaid on the theoretical 

plots.  The dashed line is the Kaplan-Meier estimated cumulative failure and the solid line is the 

cumulative failure that results from equations (5) and (6) where α = 2 and c = 12.  The imputed 

survival time is derived by generating a number, x, from U[0.41, 1] and finding the time that 

corresponds with the cumulative failure of x.  When x ≤ 0.91, an event is observed for the 

imputed analysis; otherwise the subject is EOS censored at 27 months.  In either case, the 

informative censoring has been effectively “removed” by the imputation process. 

As noted above, when u > 0.41, the subject is LTFU censored.  However, a survival time is still 

generated for the subject.  This is the survival time that would be observed if there were no 
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censoring at all, neither LTFU nor EOS.  If we allow this survival time to be EOS censored when 

it is greater than 27 months, we arrive at the data we would have observed for the subject if there 

were no LTFU censoring.  We will refer to such data as the “true” data for the subject.  The table 

below summarizes the example subject’s observed data for the “true”, naïve, and imputed 

analyses under different ranges of u and x. 

Table 2. Example subject’s observed data under different ranges of u and x 

u ~ U[0, 1] Observed data x ~ U[0.41, 1] 
“True” Naïve Imputed 

u ≤ 0.41 Event 

s = FE
-1(u)  

Event 

s = FE
-1(u) 

Event 

s = FE
-1(u) 

n/a 

 
0.41 < u ≤ 0.77 

 
Event 

s = FE
-1(u) 

 
Censored 
12 mos. 

Event 

s = FI
-1(x) 

0.41 < x ≤ 0.91 

Censored 
27 mos. 

x > 0.91 

 
u > 0.77 

 
Censored 
27 mos. 

 
Censored 
12 mos. 

Event 

s = FI
-1(x) 

0.41 < x ≤ 0.91 

Censored 
27 mos. 

x > 0.91 

We generate all the subject data for one instance of the example trial outlined above in this 

manner.  Figure 3 presents a summary of the so-called naïve analysis, which assumes all 

censoring is non-informative.  The results indicate a statistically significant treatment effect 

(p = 0.032) suggesting the treatment is beneficial.  However, Figure 4 shows considerable LTFU 

censoring in both treatment arms.  At analysis time, 7 percent of the control subjects and 12 

percent of the treatment subjects had been lost to follow-up.  This is a situation where we would 

like to assess the robustness of the results to alternative assumptions about the association 

between LTFU censoring and survival. 
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Figure 3. Kaplan-Meier survival under assumption of noninformative censoring 
 
 
 
 

Figure 4. Distribution of censoring status over time 
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Using the imputation method outlined above, we estimate the treatment effect over a range of 

assumptions for αt and αc and present the results in two contour plots in Figure 5.  The estimated 

hazard ratio is on the left, and its upper confidence limit is on the right.  We vary each parameter 

on the log scale over a range of -1.1 to 1.1 in increments of 0.025. The range corresponds with 

hazard ratios from 0.33 to 3.00.  Estimates are made for the 7,921 combinations of the two 

parameters. For each scenario, the estimated treatment effect is based on 50 imputed datasets (or 

iterations). 

Contour lines are displayed for the estimated p values of 0.10, 0.05, and 0.01.  These are plotted 

using a LOESS smoother on the parameter coordinates that correspond with scenarios that have 

estimated p values in the range of [0.09, 0.11), [0.045, 0.055), and [0.009, 0.011), respectively.  

The p value for a scenario is estimated by: 

 2 [1-Τ(|θs| / √ݏݒ , υ)]         (12) 

where  Τ(.) is the cumulative distribution function for the t distribution with υ degrees of freedom 

calculated from the following equation based on a Satterthwaite approximation [23]. 

 υ = (I-1) [1 + 1/(I+1) vs / var(θi)]
2       (13) 

We now consider the plot of the estimated hazard ratios. The center corresponds with the 

assumption of non-informative censoring. We can see that the statistical significance of the 

treatment effect is robust to LTFU censoring assumptions that are non-differential (αt = αc) when 

αt < 2.  We would expect such a turning point for trials in which the distributions of LTFU times 
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differed between treatment arms as is the case with our example.  When the distribution of LTFU 

censoring is similar between the two arms, the contours tend to run parallel to αt = αc. 

The plots in Figure 5 are intended for decision makers who presumably will have some sense of 

plausible ranges for the parameters.  This sense would likely be informed by data describing the 

likely reasons for a trial subject being lost to follow-up and the relative frequency of each reason. 

The data for our example were simulated with αc = 1.1 and αt = 2.0.  This is approximately the 

point in Figure 5 where the p = 0.10 contour crosses the αt = 2 line.  The dashed lines in Figure 6 

show what we refer to as the “true” estimates of the survival functions.  The “true” estimate is 

obtained by changing the definition of the observed data to the minimum of the EOS time and 

survival time, effectively “removing” informative censoring.  These data can be thought of as the 

data we would have observed had there been no lost to follow-up.   

In Figure 6, we see that for much of the follow-up period the “true” survival estimate of the 

treatment arm is lower than the naïve estimate as we would expect with a doubling of the hazard 

(αt = 2) for subjects who are lost to follow-up.  The “true” estimate of the control arm is actually 

slightly higher than the naïve estimate for most time points after 10 months despite the slightly 

increased hazard modeled for lost to follow-up subjects (αc = 1.1).  This particular result can be 

ascribed to random variation in the generation of the survival times.  In the next section we 

demonstrate that if we were to run the trial many times under the same assumptions, the “true” 

survival estimate of the control arm would, on average, be lower than the naïve estimate. 
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Figure 6. Kaplan-Meier survival after “removing” informative censoring 
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Chapter 3 

Performance Under Proportional Hazards 

Our approach assumes that, upon being lost to follow-up, subjects experience an increase or 

decrease in hazard proportional to subjects who have not been lost to follow-up. This increase or 

decrease is specified through treatment-specific parameters called censoring adjustment factors 

(CAFs).  In this section, we assess the performance of our estimates when the assumptions 

regarding the values of the CAFs and the proportionality of hazards are indeed correct. 

Taking up the above example again, but focusing only on the treatment arm where LTFU 

censoring is strongly associated with survival, we may ask how well the imputed estimate of the 

survival function compares to the “true” estimate when the correct value of αt is used for the 

imputation.  Figure 7 shows a point-wise average imputed survival function based on 50 imputed 

datasets using αt = 2.  We see that the average imputed survival follows the “true” estimate more 

closely than the naïve estimate does, as we would expect, up until about 20 months.  Thereafter 

the naïve estimate actually tracks closer to the “true” one. 

However, this is only one instance of a trial.  We would like to do a similar comparison over 

many such trials.  Using the same parameters as our example, we simulate 5,000 trials and 

compare the imputed estimate of the survival function for the treatment arm to the naïve 

estimate.  Given the number of simulations, the precision of our confidence interval coverage 

assuming a correct 0.05-level test is +/- 0.006.  Figure 8 shows the average difference in survival 
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Figure 7. Average imputed survival compared to “true” and naïve estimates 
 

Figure 8. Average difference in survival from “true” estimate 
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from the “true” estimate across follow-up time for the two methods.  We see that, on average, the 

imputed estimate hews to the “true” estimate throughout most of the follow-up period while the 

naïve estimate increasingly overestimates survival since it does not account for informative 

censoring.   

There is a slight bias in the imputed survival estimate near the maximum follow-up time.  In 

general, this occurs because we have relatively little data with which to estimate survival toward 

the end of follow-up.  Figure 9 shows the naïve cumulative hazard for the treatment arm of our 

example along with the cumulative hazard used to impute survival time for a hypothetical subject 

who is lost to follow-up at 15 months.  We can see that the cumulative hazard is flat from 32 to 

36 months because there were no events during that time period.  Since the naïve hazard, which 

is used as the baseline hazard that is either increased or decreased by the CAF for imputations, is 

zero from the last event time until the maximum follow-up time, subjects with LTFU censoring 

during this time period are effectively imputed to be EOS censored at the time they would have 

reached their maximum follow-up had they not been LTFU censored.  Thus, during this period, 

there would be no simulated change to their hazard with respect to non-LTFU subjects.  

Figure 10 shows the average root mean squared error (RMSE) from “true” survival across 

follow-up time for the naïve and imputed methods.  For the first six months the imputed and 

naïve RMSEs are similar, but thereafter the imputed RMSE is considerably lower.  The gap 

narrows somewhat toward the end of the follow-up period due to the bias noted above.  
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Figure 9. Cumulative hazard for hypothetical subject lost to follow-up at 15 months 

 

Figure 10. Average root mean squared error from “true” for imputed and naïve methods  
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Our goal in using the imputed method is to generate the data as it would have been observed in 

the absence of informative censoring.  Thus, in our assessment of the method, we have taken the 

“true” estimate to be a sort of gold standard.  We continue to use this standard as we consider 

estimation of the treatment effect under different trial scenarios and different censoring 

adjustment factors.  For each trial scenario that we consider, we run 5,000 simulations.  The 

average of the “true” treatment effect over these simulations is considered to be the best estimate 

we have of the treatment effect and we calculate how often the confidence intervals estimated 

from the imputed and naïve methods cover this estimate. 

Our base trial scenario is the example trial we have used throughout. (See Table 1 for the 

specifications of the survival and censoring distributions.)  The simulation results for this 

scenario are presented as scenario A1 in Table 4.  Variations on the base scenario are presented 

in scenarios A2 through A8.   

The second column of the table indicates the number of subjects per treatment arm.  For most 

scenarios this is 200, but for A4, we double the sample size. 

The third column indicates the type of end-of-study censoring.  For most scenarios, we assume 

uniform study recruitment through 24 months and a subsequent 12 month period of follow-up 

without any new recruitment.  Under scenario A5, there is also a 12 month period of follow-up 

without new recruitment, but for the first 24 months of the study we assume that recruitment 

starts out slow and increases or “ramps up”.  In this scenario we would expect higher overall 

rates of EOS censoring, lower rates of LTFU censoring, and fewer events since more patients 

would have shorter maximum follow-up times. 
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In all the scenarios of Table 4, the censoring adjustment factors used for imputing survival time 

for LTFU subjects are the same as those used in the simulation of the data.  The base scenario 

assumes a slightly increased hazard for subjects lost to follow-up in the control group (αc = 1.1) 

and a doubling of the hazard for such subjects in the treatment group (αt = 2.0). Scenario A3 

assumes a tripling of the hazard in the treatment group; scenario A7 doubles the hazard for the 

control group and triples it for the treatment group; and scenario A8 reduces the hazard by a third 

for the control group. 

Scenarios A2, A6, and A8 employ variations on the Weibull scale parameters used for the LTFU 

censoring distribution. These are presented in Table 3. 

Table 3. Variations to the base LTFU censoring distribution parameters 

Scenario Control Treatment 

   

A2, A8 σc  = 60 months σt  = 90 months 

 wc = 1.1 wt = 0.7 

   

A6 σc  = 30 months σt  = 30 months 

 wc = 1.1 wt = 0.7 
 

The resulting rates of LTFU censoring for each scenario are presented in the columns under the 

heading “Mean LTFU censoring”.  For the base scenario, approximately 7 percent of subjects on 

the control arm and 14 percent on the treatment arm are censored. In scenarios A2 and A8, the 

treatment arm rate is increased by about 50 percent and the control arm rate is approximately 

doubled. In scenario A6, the treatment arm rate is approximately triple and the control arm rate is 

approximately quadruple their base rates.  Throughout this paper we will refer to LTFU 

censoring with rates below 15 percent as “light”, 15-25 percent as “moderate” and above 25 
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percent as “heavy”.  Of course, censoring above 10 percent, for example, may be considered 

heavy in some study settings.  The terminology is only meant to distinguish the censoring 

scenarios that we explore in our analysis. 

In Table 4, we see that the mean treatment effect for the naïve estimate is fairly consistent 

throughout all scenarios as we would expect.  The data are simulated such that the increase in 

hazard occurs only after the point at which a subject is lost to follow-up so differences in the 

censoring patterns or the hazard ratio between LTFU subjects and others should not affect the 

naïve estimate.  We also see that the mean treatment effect for the imputed estimate is quite close 

to the “true” estimate for all scenarios with the largest difference being 0.004 or about 0.4 

percent for scenario A6.  Given the number of simulations, we would expect our confidence 

interval coverage rate to be within +/- 0.006 of 0.950.  Six of the eight scenarios are within this 

range, scenario A2 with a coverage rate of 0.942 is quite close, and the coverage of scenario A6 

is 0.928.  Scenario A6 has overall LTFU censoring in the 30-35 percent range, which greatly 

exceeds the typical amount of most trial settings.  While the coverage rate for A6 is lower than 

we would like, it is considerably better than the 70 percent coverage rate of the naïve CI. 

The imputed method CI coverage exceeds that of the naïve method for all scenarios.  In addition, 

the widths of the imputed method CIs are also narrower than those of the naïve method.  The 

difference ranges from 0.003 (A4) to 0.040 (A6) on the log hazard ratio scale for A1-A8. 

Table 5 compares CI coverage rates for early versus late LTFU censoring.  Scenario A9 uses the 

moderate LTFU censoring distribution of scenario A2, but increases the sample size to 400 per 

arm and increases the control arm CAF to 1.5.  Scenario A10 differs from A9 only in the LTFU 
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censoring distributions.  The distributions for A10 were chosen to result in approximately the 

same amount of LTFU for each arm as scenario A9, but to have more of it occur later in follow-

up.  Figure 11 shows the distributions of observed LTFU censoring for the control and treatment 

arms for A9 (early) and A10 (late).  The imputed method CI coverage for the late LTFU 

censoring scenario is worse than for the early, 92.4 percent versus 94.6 percent.  Figure 12 shows 

bias and average root mean squared error by trial arm and scenario for the imputed and naïve 

methods.  Toward the end of follow-up there is significantly more bias in the late LTFU 

censoring scenario than the early one for the imputed method. Again this is likely driven by the 

relatively fewer number of events following LTFU censoring in this scenario.  In Figure 13 we 

can see that a significant portion of LTFU occurs beyond 27 months after which there are hardly 

any observed events. 

Scenarios A11 and A12 have early censoring for one arm and later censoring for the other.  The 

CI coverage is worse when the late censoring is in the control arm, which is consistent with the 

results presented in Figure 12, which show more bias in the control arm. 

Figure 11. Early (A9) and late (A10) observed LTFU censoring distributions 
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Figure 12. Bias and average RMSE for early and late LTFU censoring 

 

Figure 13. Distributions of events and observed censoring times by early and late LTFU  
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Up until this point we have considered survival times from Weibull distributions with a shape 

parameter of 1 (i.e. exponential survival).  Table 6 shows the results of a number of scenarios 

where we use other shape parameters.  There are two base scenarios: increasing hazard (WI1) 

and decreasing hazard (WD1).  The hazards for the control and treatment arms for each of these 

are presented in Figure 14.  All other parameters for these scenarios are the same as those of A1.   

Figure 14. Weibull hazards for scenarios WI1-WI5 and WD1-WD5 

The variations to the base Weibull scenarios (WI2-WI5 and WD2-WD5) are similar to the 

variations to the base exponential scenario.  The varying characteristics of each scenario are 

underlined in Table 6.  As with the exponential survival scenarios, the mean treatment effect for 

the imputed method is within a percent of the “true” mean treatment effect for all scenarios. The 

imputed CI coverage is also good for all but the two scenarios that have heavy LTFU censoring, 

and even for those the coverage is above 92 percent.  The CI coverage under the imputed method 
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Figure 15 shows the average difference in survival from the “true” estimate over follow-up time 

for the imputed and naïve methods for the treatment arm of scenarios WI3 and WD3, 

respectively.  As with Figure 8, which presented an exponential survival scenario, imputed 

survival for the increasing- and decreasing-hazard Weibull scenarios with moderate LTFU 

censoring, on average, only departs from the “true” estimate near the maximum follow-up time, 

and even then the departure is slight. 

Figure 16 shows average root mean squared error from “true” survival over follow-up time for 

four Weibull survival scenarios.  The left plot shows increasing hazard scenarios WI2 (moderate 

LTFU) and WI3 (heavy LTFU) and the right plot shows decreasing hazard scenarios WD2 

(moderate LTFU) and WD3 (heavy LTFU).  RMSE increases with greater LTFU censoring for 

both increasing and decreasing hazard survival.  This greater variability with increases in LTFU 

censoring likely contributes to the decrease in CI coverage that is observed in the heavy LTFU 

scenarios. 
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Figure 15. Average difference in survival from “true” estimate  
Treatment arm (scenarios WI3 and WD3) 

 

Figure 16. Average RMSE from “true” survival for imputed and naïve methods  
Treatment arm (scenarios WI2, WI3, WD2 and WD3) 
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Chapter 4 

Performance Under Non-Proportional Hazards 

In the previous section, we examined the performance of the imputation method when our 

assumption regarding the proportionality of hazards between subjects who are lost to follow-up 

and those who are not holds true.  In this section, we consider the performance when that 

assumption does not hold.  We would like to know how the method performs when we know the 

true “average” effect of LTFU censoring (i.e. the overall hazard ratio), but not what the 

relationship between the hazards is at any given point in time. 

To simulate non-proportional hazards we apply sinusoidal perturbations to the underlying hazard 

at the point of LTFU censoring.  We choose this approach to investigate scenarios with varying 

levels of non-monotonic bounds and with differences in the association between censoring and 

survival for subjects who are censored at different points in time. 

For a given treatment arm, we consider only sinusoidal perturbations that are “equivalent” to a 

given proportional hazards censoring adjustment factor (CAF) in the sense that in very large 

samples under the same trial parameters and when LTFU censoring is modeled as a time varying 

covariate, they will result in the same hazard ratio comparing LTFU subjects to other subjects.  

This concept is similar to the “average regression effect” discussed by Xu and O’Quigley [24].  

Figure 17 shows four sinusoidal perturbations that are equivalent to the proportional hazards 

CAF used in the treatment arm of our example (αt = 2).  The black line shows the underlying 
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exponential hazard.  This line becomes dashed after the point of LTFU censoring at six months.  

The CAF-adjusted hazard is the horizontal red line.  The other curves are sinusoidal 

perturbations of the base exponential hazard with wavelengths of 9, 18, 36, and 72 months.  

Their amplitudes were chosen to achieve the above definition of equivalence.  The corresponding 

cumulative failure distributions of the hazard functions are presented on the right hand plot of 

Figure 17. 

Survival times for the sinusoidal perturbation scenarios are generated using the same method 

described in the previous section, but instead of numerically integrating over the hazard function 

in (11), the following hazard function is used:  

hS(t) = I(t ≤ c) hw(β, k, t) + I(t > c) [α exp{Asin[2π/d(t-c)]} hw(β, k, t)]  (14) 

where A and d are the amplitude and wavelength of the sine function and c is the LTFU 

censoring time. 

Equivalent sinusoidal perturbation scenarios are identified for each treatment arm by specifying 

an amplitude and wavelength, generating data for a million subjects, and modeling an LTFU 

indicator as a time varying covariate in a Cox regression model.  The “true” data, for which EOS 

is the only type of censoring, are the observed data for the model.  The estimated coefficient for 

the time varying covariate is the equivalent CAF for the specified sinusoidal perturbation 

parameters. 
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Table 7 presents the results of the sinusoidal perturbation scenarios.  The trial specifications for 

scenarios S1-S4 vary from scenario A1 only in the amplitudes and wavelengths used to generate 

the treatment arm data.  The control arm data generation does not employ the sinusoidal 

perturbations.  Figure 18 shows the average difference from “true” survival over follow-up time 

for the treatment arm in scenarios S1-S4.  In contrast to the proportional hazards scenarios of the 

previous section in which the average difference between imputed and “true” survival was 

negligible throughout most of the follow-up period, the average difference for these scenarios 

fluctuates between -1 and 1 percentage point.  However, this variation is apparently not sufficient 

to affect CI coverage much. The imputed method coverage rates for the treatment effect are all 

within the expected precision of +/- 0.006. 

Scenarios S5-S8 simulate moderate early censoring for both trial arms and various sinusoidal 

perturbations.  For scenarios S6 and S7, the control arm has equivalent CAFs below 1 indicating 

that LTFU censored subjects have better survival prospects than other subjects on the control 

arm, while the treatment arm has equivalent CAFs greater than 2. In scenarios S5 and S8, the 

equivalent CAFs of the control and treatment arms are similar.  The mean imputed estimates for 

these scenarios are within 1 percent of the “true” mean.  The CI coverage rate ranges from 93.7 

to 94.4 percent. 

Scenarios S9 and S10 employ the late LTFU censoring used in the previous section for scenarios 

A10-A12.  In S9, only the treatment arm has late LTFU censoring and in S10 both arms have it.  

The mean treatment effect of the imputed method is further from the mean “true” estimate in 

these scenarios than in S5-S8 and the CI coverage is somewhat worse.  While the naïve CI 
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coverage is better than the imputed coverage in S9, this is likely due to the scenarios 

coincidentally generating “true” data that have the same relationship as the naïve data rather than 

evidence that the naïve consistently performs better under late LTFU censoring.  In scenario S12 

where the CAF and amplitude parameters are altered somewhat and there is late LTFU censoring 

on both arms, the CI coverage for the imputed method is similar to what it was for S9 and S10, 

but the naïve method coverage is significantly worse.    

In scenario S11 we simulate heavy censoring and choose wavelengths for the control and 

treatment arms that result in opposite biases over time (see Figure 19).  The mean imputed 

treatment effect estimate is about 2 percent higher than the mean “true” estimate suggesting 

some bias.  The coverage rate of 92.4 percent is similar to other heavy censoring scenarios 

(e.g. A6, WI3). 
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Figure 18. Average difference in survival from “true” estimate 
Treatment arm (scenarios S1-S4) 

 
 

Figure 19. Average difference in survival from “true” estimate 
Treatment and control arms (scenario S11) 
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Chapter 5 

Discussion 

We have considered the use of an imputation-based method to explore the sensitivity of 

treatment effect estimates to departures from non-informative censoring.  On the basis of 

extensive simulations, we find the accuracy of the sensitivity analyses to be relatively unaffected 

by censoring rates, the degree of association between censoring and survival, and departures 

from the method’s assumption of proportionality of hazards between LTFU and non-LTFU 

subjects.  Under the low censoring scenarios we explored, confidence interval coverage is 

generally within the precision we would expect for a correct estimation procedure.  Under heavy 

censoring and late censoring, the coverage was not ideal, but it did not fall below 92.4 percent in 

any of the scenarios explored. 

The accuracy of the estimates appear to be most affected by late censoring, which results in the 

imputation of residual survival times over a period in which the estimated hazard may be zero for 

non-LTFU subjects.  Further research could be done to explore whether adjustments to the non-

LTFU hazard toward the end of follow-up can improve the accuracy of estimates.  One 

possibility is to use the median unbiased estimate of an exponential model as the hazard beyond 

the last observed event.  In this approach, we would use a hazard estimate on each arm such that 

there is 50 percent probability of observing 0 events in the cumulative residual observation time 

past the time of the last observed event on that arm.  Specifically, letting M be the maximum 
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time at which an event was observed for treatment arm k, and PY =  (Yi – M ) I(Yi > M), then 

we estimate the hazard beyond time M as λ(t) =  log(2) / PY, because under an exponential 

model, the probability of observing 0 events in time PY is e-hPY. 

The sensitivity analysis described in this paper could be readily extended to include CAF 

parameters for several types of LTFU censoring per treatment arm.  However, as more 

parameters were added, the presentation and digestion of the results would become increasingly 

difficult and the virtue of the method’s straightforwardness would erode.  Simple variations such 

as using a few distinct values (e.g. low, medium, high) of an additional parameter could be 

accommodated without too much sacrifice to simplicity.  LTFU types thought to be unassociated 

with survival could be treated in the same manner as EOS censoring and not be imputed. 

The method could also be extended to incorporate covariate adjustment. The two parameter 

analysis could be retained with the assumption that the treatment-specific CAFs did not vary 

across covariate strata.  Allowing for CAF variation across strata would increase complexity 

substantially and likely undermine the method’s simplicity.  

Although many authors have proposed methods for investigating the sensitivity of clinical trial 

results to departures from the assumption of non-informative censoring, to our knowledge, such 

analyses are rarely presented in regulatory submissions and publications.  In addition, there is 

little advice in trial guidelines about how to address missing data in general or potentially 

informative time-to-event censoring in particular.  In recognition of this deficiency, the U.S. 

Food and Drug Administration (FDA) has been seeking advice in developing guidelines for the 

treatment of missing data.  As part of this effort, in 2010, the FDA created the Panel on the 
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Handling of Missing Data in Clinical Trials. Among other advice, the Panel recommended the 

following. 

(1) Statistical methods for handling missing data should be specified by clinical trial 

sponsors in study protocols, and their associated assumptions stated in a way that can be 

understood by clinicians. 

(2) Sensitivity analyses should be part of the primary reporting of findings from clinical 

trials. Examining sensitivity to the assumptions about the missing data mechanism should 

be a mandatory component of reporting. 

One of the virtues of the sensitivity analysis considered in this paper is its simplicity.  The 

method can be boiled down to the following: multiply impute survival times for LTFU-censored 

patients assuming an “average” relative increase or decrease in their hazard compared to the 

hazard of subjects that are not LTFU censored.  The sensitivity analysis can span a wide range 

of assumptions regarding the “average” proportion that the hazard is increased or decreased and 

its results can be easily summarized in a single graphical presentation.  In addition, the method is 

relatively unaffected by departures from its proportional hazards assumption.   

However, there does remain the challenge of determining a plausible range for the parameters.  

As noted in the background chapter, there are many possible reasons for a subject being LTFU, 

some of which may tend to be associated with longer survival, some shorter, and some not 

associated with survival at all.  Investigators and regulators would have to have some sense of 

how the particular mix of reasons for LTFU for a trial translates into an “average effect” hazard 

ratio. 
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The interpretability of the sensitivity parameters and the selection of plausible ranges for the 

parameters are a challenge in any sensitivity analysis.  The parameters used here would seem to 

be as easily interpreted as any of those noted in Chapter 1. 

The lack of readily available software for executing sensitivity analyses is another likely barrier 

to exploring departures from non-informative censoring.  The methods described in this paper 

are easy to implement and the required inputs vary little from those of standard survival methods.  

The user need only specify plausible ranges for the treatment specific CAFs, provide a maximum 

follow-up time for subjects who are LTFU, and redefine the usual censoring indicator such that 

LTFU censoring is distinguishable from EOS censoring.  In our modeling we use δ = 0 for an 

event, δ = 1 for EOS censoring, and δ = 2 for LTFU censoring. 

In the estimation of a given scenario, we have the modest goal of imputing the data as it might 

have been observed in the absence of informative censoring.  We do not attempt to impute 

administratively censored subjects or to impute survival beyond LTFU subjects’ subject-specific 

maximum follow-up period.  This allows us to minimize assumptions regarding the survival 

distribution and to employ standard survival analysis methods once the data have been imputed.  

The limitations of the method’s accuracy under heavy and late LTFU censoring must be weighed 

against the limitations of the status quo in which sensitivity analyses are not conducted at all.  

With this method we have a straightforward approach that is easy to implement, has reasonably 

accurate estimates under a wide range of conditions, and can provide valuable insight as to the 

robustness of treatment effect estimates under departures from non-informative censoring.
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