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Flexible Implementations of Group Sequential Stopping 
Rules Using Constrained Boundaries 

Bart E. Burington and Scott S. Emerson* 

Department of Biostatistics, Box 357232, University of Washington, Seattle, Washington, U.S.A. 
*email: semerson@u.washington.edu 

SUMMARY. Group sequential stopping rules are often used during the conduct of clinical trials in order 
to attain more ethical treatment of patients and to better address efficiency concerns. Because the use of 
such stopping rules materially affects the frequentist operating characteristics of the hypothesis test, it is 
necessary to choose an appropriate stopping rule during the planning of the study. It is often the case, 
however, that t he number and timing of interim analyses are not precisely known at the time of trial 
design, and thus the implementation of a particular stopping rule must allow for flexible determination of 
the schedule of interim analyses. In this article, we consider the use of constrained stopping boundaries in 
the implementation of stopping rules. We compare this approach when used on various scales for the test 
statistic. When implemented on the scale of boundary crossing probabilities, this approach is identical to 
the error spending function approach of Lan and DeMets (1983). 

KEY WORDS: Clinical trial; Error spending function; Group sequential; Interim analyses; Monitoring; 
Stopping rule. 

1. Introduction 
While randomized treatment trials are in progress, data safety 
monitoring boards (DSMBs) typically conduct interim anal- 
yses of accumulating observations for early evidence of harm, 
efficacy, or futility of treatment. Decisions to stop a trial 
early may be based upon the primary outcome of interest 
and/or other considerations, such as treatment toxicity or 
ethical concerns. Using families of group sequential stopping 
rules, investigators may initiate clinical trials with sampling 
schemes adapted to the particular treatments, ethical con- 
cerns, and financial considerations involved. However, the es- 
timated schedule of interim analyses, which is required to 
compute operating characteristics such as power and average 
sample number (ASN), is frequently altered over the course 
of the study. 

To address such deviations from planned analysis schedules, 
Whitehead and Stratton (1983) proposed a "Christmas tree" 
adjustment to their triangular test. This adjustment substi- 
tutes observed increments in the statistical information levels 
into the approximate formulae for the continuous triangular 
test boundaries. As noted by Emerson (1996), so long as an 
adjusted p-value is used for inference at the final analysis, the 
type I error can be maintained exactly. 

Lan and DeMets (1983) adapted a suggestion by Slud and 
Wei (1982) to compute boundaries at each analysis, from the 
inverse function of the cumulative boundary crossing proba- 
bilities under the null, where the probabilities are constrained 
to equal a prespecified, increasing sequence, with the last el- 
ement set to the total type I error. The adapted procedure 
replaces the fixed sequence with a prespecified function of the 

proportion of the trial completed, where the proportions are 
often based upon a planned maximal sample size or level of 
statistical information. The computation of these probabili- 
ties requires only the history of analysis times and a variance 
estimate. Hence, analysis times may be specified as needed 
during the trial. Provided that the schedule of analyses does 
not depend upon the interim estimates of treatment effect, 
this "error spending" approach maintains the type I error of 
a trial exactly. 

Because spending functions are defined on a special scale, 
their adaptation to families of group sequential designs that 
are defined on other scales requires the use of interpola- 
tion to generate an induced error spending function. This 
may or may not approximate the boundary relationships of 
the original design well. In this article, we propose a pro- 
cedure for recomputing boundary function critical values at 
interim analyses while constraining the boundary functions 
to match the boundaries actually used at prior analyses. 
Flexible monitoring can then be implemented directly with 
any family of group sequential stopping rules. Boundary con- 
straints also facilitate the custom tailoring of boundary shape 
functions during the planning of a trial. We adapt the pro- 
cedure to allow for the maintenance of both type I and 
II errors. 

2. Setting and Notation 
We consider a two-arm randomized trial of a treatment 
(group 1) versus control (group 0), with independent observa- 
tions Yei (Ue, o2), f = 0, 1; i = 1, 2,..., Nej. At calendar 
times tl, t2,...,tj, analyses are performed on the available 
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data on Nej subjects in group ?, and, for convenience, we de- 
fine Nj = NOJ + N1J. At the jth analysis, we estimate treat- 
ment effect with the maximum likelihood estimate (MLE), 
0j - Yij - Yoj, where Yj = 1/Ne j Zej Yti. In the absence 

of early stopping, 0j is asymptotically normally distributed, 
with mean 0 = p1 - p,o and variance Vj = a/N1 + r2/Noj. In 

this setting, the sequence of estimates, {0j}, has the indepen- 
dent increment structure often assumed in the development 
of group sequential methods (see, for instance, Jennison and 
Turnbull, 2000, Chapter 3). 

Following Kittelson and Emerson (1999), at each analysis, 
j = 1,..., J, for some statistic Tj, we define stopping sets 
of the form Sj {(-oo, aj] U (bj, Cj) U [dj, oo)} and continu- 
ation sets, Cj _ S, where aj < bj < Cj < dj and aj = bj 
and cj = dj. The trial stops at the Mth analysis, where M = 
min{j :Tj ESj. 

There are a variety of scales on which Tj can be defined, 
including the partial sum scale, Sj = NljOj, the normalized Z 
statistic scale, Zj = 0j/V/Vj, the fixed-sample p-value scale, 

Pj =1- (-(Oj//Vj), the MLE scale, and the error spending 
scale (Lan and DeMets, 1983). A statistic on the upper 
type I error spending scale, corresponding to the observation 
(M = m, SM = s), where s > din, may be defined as: Edm = 

[EJm Pr(Sj > dj 0o) + Pr(SM > sIM = m, Oo)]/a,, where 
a, is the total upper stopping probability under 00. Sim- 
ilar scales can be defined for lower type I and upper and 
lower type II errors. These scales, as well as the stochastic 
curtailment, Bayesian predictive probability, and poste- 
rior probability scales, are easily shown to be one-to-one 
transformations of each other (Emerson, 2000). 

The exact stopping boundaries across the J analysis times 
can be related to each other through the use of boundary 
shape functions. Letting 0 < HI1 < ... < Hj < ... < IIj = 1 
denote the proportion of the trial completed at analysis j, we 
define aj = a(nj), bj = b(nj), cj = c(rIj), dj = d(Ij), where 
the exact form of the boundary shape functions will depend 
upon the scale for Tj that is used to define stopping sets. 
For continuation and stopping sets on the partial sum scale 
(so, Tj = Sj), the density for the asymptotic distribution at 
(M = m, SM = s) may be derived following Armitage, 
McPherson, and Rowe (1969). 

3. Design-Time Tailoring of Stopping Rules 
Using Boundary Constraints 

Group sequential sampling schemes typically link the stop- 
ping sets across analyses by way of smooth parametric func- 
tions of the proportions IIj, on some boundary scale. Kittelson 
and Emerson (1999), for instance, proposed a family of upper 
boundaries for a test of Ho: = 0, in which stopping occurs 
the first time 

0j > dj = (Ad + IJ (1 - n)Rd) Gd, (1) 

where Ad, Pd and Rd are user-specified boundary shape pa- 
rameters, and Gd is a critical value found by computer search 
to attain a desired type I error. The subscript d identifies pa- 
rameters and critical values for an upper (d) boundary, with 
similar definitions applying to the a, b, and c boundaries. Sim- 
ilarly, Emerson (2000) has extended the parametric family 
of error spending functions that was described by Kim and 

DeMets (1987), such that early stopping occurs the first time 

Edj < dj = (Ad + InPd (1- nj)Rd) Gd, 0 < d 

where Pd and Rd are user-specified and determine Ad and Gd, 
since dj(HI = 1) = 1. Error spending scale boundaries are 
conventionally transformed to stopping rules on another scale, 
for example, for a comparison to the estimate of treatment 
effect. 

When designing a group sequential stopping rule, a chosen 
parameterization for a family of boundary shapes will likely 
meet most requirements. However, special considerations may 
lead to questions regarding the appropriateness of potential 
stopping decisions at certain analyses. In such cases, investi- 
gators can amend the design based upon a boundary shape 
with minimum, maximum, or exact constraints for these 
analyses. 

For example, when considering a design based upon an 
O'Brien-Fleming (OBF) (1979) boundary shape, members of 
a DSMB might object to boundaries at early analyses that are 
too large in magnitude to result in early stopping for extreme 
estimates of treatment effect. One common modification to 
address this concern specifies boundaries at interim analyses 
to be the less extreme than OBF and Haybittle-Peto bound- 
aries, which use two-sided fixed-sample p-values of 0.001 at 
all interim analyses. 

One hypothetical example is a two-sided test for a 
10 mmHg increase or decrease in systolic blood pressure 
(SBP), with early stopping only for efficacy (a2 = l2 = 100, 
a = 0.05, Noj = N1J = 64, J = 4). In an unconstrained OBF 

design, the efficacy boundary for four equally spaced analy- 
ses corresponds to fixed-sample p-values of (<0.0000, 0.0021, 
0.0097, 0.0215) and 0 of (20.24, 10.12, 6.75, 5.06). Members of 
a DSMB may regard a treatment effect of 20.24 to be larger 
than necessary to warrant stopping the trial at the first anal- 
ysis. With the application of a minimum constraint of 0.0005 
on the one-sided fixed-sample p-value, the boundaries at the 
first analysis are (0.0005, 0.0021, 0.0096, 0.0213) and, on the 
scale of 0, (16.45, 10.14, 6.76, 5.07). On the partial sum scale, 
OBF boundaries are characteristically constant, in this exam- 
ple, at 161.94. With the constraint, the partial sum boundary 
is 131.62 at the first (constrained) analysis and a constant 
162.24 for the remaining analyses. To accommodate the con- 
straint, the computer search for Ga and Gd results in a slight 
increase in the magnitude of 0 boundaries 2-4, to maintain 
the specified type I error at 0.05. Also, the power to detect 
the alternative declines from 0.9546 to 0.9543. The return for 
this slight decrease in power (-0.035%) is a 3.08% reduction 
in the ASN at the alternative (from 41.93 to 40.64). Note 
that one might also choose to maintain power when adding 
the constraint, which, in this case, would require an increase 
in maximal sample size of only a fraction of an observation. 

At design time, a parametric boundary function with con- 
straints defines a new boundary function on the same scale. 
Such functions are often compositions of distinct boundary 
shape functions, which may be globally constructed, based 
upon minimum or maximum operators, or piecewise over 
the trial proportions, {IIj}. Operating characteristics may be 
computed in the same manner as other group sequential de- 
signs (Emerson, 2000). 
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4. Design-Time Alternatives for the Number 
and Timing of Analyses 

The boundaries given by equation (1) determine the con- 
tinuation sets in the sampling density for the treatment ef- 
fect. Computation of the total type I error requires all J 
continuation sets, with up to four boundary values each, 
{aj,... ,dj}, and their associated trial proportions, {Ilj}. It 
follows that the search for critical values for each boundary, 
{G., ? = a,...,d}, that together satisfy a total type I er- 
ror constraint will depend upon the complete sequence {Ij }. 
When alterations are made to the number or timing of anal- 
yses, previous critical values will not, in general, continue to 
satisfy the type I error constraint. 

Table 1 illustrates how boundaries at earlier analyses de- 
pend upon the trial proportions of later analyses. The table 
summarizes eight possible pretrial designs, with four or five 
planned analyses, Pocock boundary shapes and four (A-D) 
sequences of proportions. Plan B adds an early analysis, at 
trial proportion 1/8, to the schedule in plan A, plan C shifts 
plan B's analysis at 1/2 earlier, to 3/8, and plan D shifts 
plan C's analysis at 3/4 earlier, to 5/8. The designs are two- 
sided, with early stopping only under the alternative. The 
upper boundary is shown for each analysis, on the treatment 
effect, error spending and normalized Z scales. On this last 
scale, the Pocock boundary shape is characteristically con- 
stant. The sample size for each plan is held constant at the 
value achieving power 0.975 for design A. 

When comparing column C to column D, we note that the 
shift of the last interim analysis from 3/4 to 5/8 changes 
all prior boundaries on both the treatment effect and er- 
ror spending scales. We further note that the error spent at 
1/4 changes from 0.3642 for plan A to 0.5030 for plan B 
and, finally, to 0.4983. This illustrates how induced error 

spending functions are sensitive to the number and tim- 
ing of analyses. It is straightforward to confirm that the 
induced error spending functions for these group sequen- 
tial families are also quite sensitive to levels of type I and 
type II error. 

5. Flexible Monitoring with Constrained Boundaries 
The designs shown in Table 1 all presume a schedule known 
in advance. Now we consider what happens when the planned 
schedule of analyses is altered during the trial. For instance, 
suppose that the monitoring schedule of plan A in Table 1, 
was anticipated, but the trial proportions for the actual in- 
terim analyses are given by columns B-D. In other words, an 
unplanned analysis is conducted at 1/8, the analysis at 1/4 
occurs as planned, and the analyses at 1/2 and 3/4 are shifted 
earlier, to 3/8 and 5/8, respectively. 

When implementing a stopping rule with unplanned alter- 
ations to the schedule of analyses, investigators must choose 
between 1) maintaining the maximal sample size (statistical 
information) or 2) maintaining the power for a specified upper 
or lower alternative. With the second approach, investigators 
have the option of specifying an absolute maximum and/or 
minimum for the sample size. 

Monitoring, as described here, may involve four scales. 
1) During the planning of the trial, the parametric family 
of boundary shapes maps trial proportions to boundary val- 
ues on a "design" scale. 2) To help monitoring, some of the 
planned design's operating characteristics may be used to in- 
duce a boundary shape on an "implementation" scale. An ex- 
ample is the interpolation over cumulative boundary crossing 
probabilities under the null to induce a type I error spend- 
ing function (Eales and Jennison, 1992). 3) At interim analy- 
ses, stopping rules may be transformed to a third-"stopping 

Table 1 
Eight pre-trial analysis plans altering the timing and spacing of analyses; o2 = aJ known 

Pocock boundaries {IIj} A B C D 

Power est. 0.9750 0.9698 0.9694 0.9685 
Sample size 369 369 369 369 
ASN, null 359.7 357.9 357.7 357.5 
ASN, alternative 177.5 173.0 176.4 171.4 

1/8 - 7.215 7.216 7.225 
Upper boundary, d 1/4 4.923 5.102 5.103 5.109 

3/8 - - 4.166 4.172 
(treat. effect scale) 1/2 3.481 3.607 

5/8 - - - 3.231 
3/4 2.842 2.946 2.946 

Final 1 2.462 2.551 2.551 2.555 

1/8 - 0.2881 0.2877 0.2853 
Upper boundary, d 1/4 0.3642 0.5030 0.5024 0.4983 

3/8 - - 0.6683 0.6630 
(error spending scale) 1/2 0.6309 0.7067 - - 

5/8 - - - 0.8357 
3/4 0.8351 0.8679 0.8644 

Final 1 1.0000 1.0000 1.0000 1.0000 
d boundary (Z scale) 2.3613 2.4470 2.4475 2.4505 

Ho: 0 = 0 vs. Hi: 10 > 4.40, o=-2 = 100, Cad = 0.025. 
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set"-scale for comparison to a statistic on that scale. An 
example is the use of the fixed-sample p-value scale, to com- 
pare t-distributed p-values to boundaries generated by soft- 
ware packages (Pocock, 1977). 4) Here, we propose a monitor- 
ing procedure that constrains boundary shape functions-on 
a "constraint scale"-to reflect the stopping rules applied at 
previous interim analyses. 

5.1 A Flexible Monitoring Algorithm 
for Maintaining Sample Size 

The test type, hypotheses, size, power, boundary scales 
(1-4, above) and boundary functions are specified prior to the 
start of the trial. An estimate of the analysis schedule is also 
specified. We refer to these parameters as the design. Here, 
we define Hj = NjI/N, j = 1,...,J. Adaptations to other 
measures of trial proportion are straightforward. The esti- 
mated stopping sets at the jth analysis will include the actual 
boundaries at earlier analyses, ak,...,dk, k = 1,...,j - 1, 
the boundaries computed for the current analysis, aj,..., dj, 
and the boundaries computed for the estimated schedule of 
future analyses, ak,..., dk, k = j + 1,..., J. For a specified 
maximal sample size, flexible monitoring is then implemented 
as follows: 

1. First analysis: if the sample size does not match the plan, 
or if the estimated future analysis schedule is amended, 
recompute the boundary function critical values, 
{G., * = a,..., d}, using the observed trial proportion, 
HI, and the-possibly revised-estimate of future trial 
proportions, 12,...,Hj-l. In general, the future analy- 
sis schedule may be revised at each analysis to accom- 
modate new logistical requirements and outside informa- 
tion, subject to the fixed maximal sample size. As noted 
in Section 1, rescheduling based upon the estimates of 
treatment effect is best avoided, due to the possibility of 
type I error inflation. Evaluate whether or not to con- 
tinue the trial, by comparing a test statistic to the first 
stopping set. 

2. Second analysis: redefine the boundary functions to 
incorporate an exact constraint for the stopping set 
from the first analysis, using the methods described in 
Section 3. The new boundary function fixes the bound- 
ary at the first analysis to the value actually used at 
the observed trial proportion II1. Specify boundary value 
equalities on the constraint scale chosen at design time. 
In practice, any scale may be used; typically, the design 
or stopping set scale is used, or, alternatively, when mon- 
itoring, the error spending scale is implemented on that 
scale. We now refer to the boundary functions as "con- 
strained on" this scale at prior analyses. Recompute the 
boundary function critical values {G., * = a,..., d} us- 
ing the history of observed trial proportions and the- 
possibly revised-estimate of future trial proportions. 
Evaluate whether or not to continue the trial. 

3. jth analysis, j = 3,...,J - 1: constrain ak(Ik) = 

ak,..., dk(k) = d, k = 1,...,j - 1, where 

ak,...,dk are values taken from the stopping sets at 
analysis k and transformed, if necessary, to the con- 
straint scale. Using a-possibly revised-analysis sched- 
ule, I Ij =- {n ,..., r, r(j+l),. ., i)(j-), Ij 1}, re- 

compute {G., ? = a,...,d}. Evaluate whether or not 
to continue the trial. 

4. Final analysis: if a hypothesis test critical value is re- 
quired, and the final sample size does not match the 
plan, recompute {G., * = a,..., d} with the actual sam- 
ple size and the constrained boundary functions. If the 
final sample size matches the plan, critical values may 
be taken from the computations at analysis J - 1. More 
commonly, adjusted p-values, estimates and confidence 
intervals will be computed using the sampling distribu- 
tion at the final analysis (see, for instance, Emerson and 
Fleming, 1990). 

This procedure is illustrated in Table 2 with a hypotheti- 
cal monitoring scenario, which adopts plan A from Table 1 as 
the pretrial plan. Monitoring is implemented with boundaries 
constrained on the treatment effect scale. The columns titled 
1-5 summarize the status at each analysis, conditional on a 
trial that does not stop prior to it. At each column's observed 
analysis, the reestimated schedule runs down the column, with 
analyses numbered under the column heading j. We suppose 
that actual interim analyses occur according to the alternative 
proportions given in columns B-D of Table 1. An early anal- 
ysis occurs at 1/8, ahead of the first planned analysis at 1/4. 
At this observed first analysis, the planned design is replaced 
with one based upon the reestimated schedule; the only differ- 
ences between the first analysis boundaries in section a) and 
plan B, Table 1, are due to the rounding up of the sample size 
at the first analysis to the nearest integer. The second analysis 
occurs according to the schedule estimated at the first analy- 
sis, so, constraining the upper boundary at the first analysis 
to be equal to 7.136 has no effect; the changes from the first 
analysis are due to the rounding up of the sample size for the 
second analysis. This is in contrast to the shifts at analyses 
3 and 4, from 1/2 to 3/8 and 3/4 to 5/8, respectively: the 
history of sample sizes and treatment effect boundary con- 
straints (above the diagonal) influence the boundaries at the 
current and later analyses. For this reason, the boundaries in 
Table 2 do not match those in Table 1, C-D. To accommo- 
date tabulation of the examples, the only alterations to the 
schedule at each interim analysis apply to the current analy- 
sis. In practice, the entire schedule of future analyses may be 
revised. 

5.2 Maintaining Power 

Pampallona, Tsiatis, and Kim (1995) proposed the use of type 
II error spending functions for the maintenance of power to 
detect a specified alternative. At each analysis, their pro- 
cedure adjusts the maximal sample size until the boundary 
crossing probabilities under the alternative match a function 
of the trial proportions, where this spending function is pre- 
specified at the planning stage. This novel approach may be 
generalized in the following sense: it is not necessary to trans- 
form the boundaries of a group sequential design to the error 
spending scale so as to maintain type I and type II error. It 
is merely necessary to re-ompute boundary function critical 
values while constraining on the stopping rules actually used 
at prior analyses: 

1. Analyses 1,...,J - 1: proceed as when maintaining 
sample size, except, subject to any specified absolute 
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Table 2 
Maintaining sample size; a2 = 0c2 known 

j Plan j: 1 2 3 4 Final 

Power est. 0.9750 0.9702 0.9702 0.9698 0.9686 0.9686 

1 - 1 47 47 47 47 47 
2 92.0 92.25 93 I 93 93 93 

Sample size 3 184.1 184.5 184.5 | 139 1 139 139 
4 276.1 276.8 276.8 276.8 231 l 231 

Final 5 368.1 369 369 369 369 369 
1 - 7.136 l 7.136 7.136 7.136 7.136 

Upper boundary, d 2 4.923 5.094 5.073 l 5.073 5.073 5.073 
(treat. effect scale) 3 3.481 3.602 3.602 | 4.151 | 4.151 4.151 

4 2.842 2.941 2.941 2.942 [ 3.230 3.230 
Final 5 2.462 2.547 2.547 2.547 2.555 [ 2.555 l 

1 - 0.2887 I 0.2887 0.2887 0.2887 0.2887 
Upper boundary, d 2 0.3642 0.5022 I 0.5030 1 0.5030 0.5030 0.5030 

(error spending scale) 3 0.6309 0.7062 0.7062 0.6684 l 0.6684 0.6684 
4 0.8351 0.8677 0.8677 0.8643 0.8379 [ 0.8379 

Final 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.00001 
d boundary (Z scale) 2.3613 2.4463 2.4462 2.4468 2.4543 2.4543 

Pocock (1977) boundaries constrained on the treatment effect scale. 
Ho: 0 = 0 vs. H1: 101 > 4.40, a2 = r2 = 100, ad = 0.025. 

minimum or maximum, revise the maximal sample size 
in an iterative search for the smallest power greater than 
or equal to the design power. 

2. Final analysis: if the final sample size matches the esti- 
mate at analysis J - 1, critical values may be taken from 
the computations at analysis J - 1. Otherwise, proceed 
as when maintaining sample size (item 4 of Section 5.1). 

In this procedure, the estimated sample sizes at future 
analyses are determined by their proportions, Hk, k = 

j + 1,..., J - 1, of each revised maximal sample size, Nj. 
As the maximal sample size changes, so does the proportion 
of statistical information available at earlier analyses. This 
is immaterial to the sampling distribution when the vari- 
ance is known, because prior-analysis boundary values are 
constrained at the observed levels of statistical information. 
Trial proportions may, however, require adjustment. When 
Nj is increasing, the proportion IIj shrinks away from Ilj+i. 
When Nj is decreasing, some convention is needed to bound 

Hj away from Ij3+1. One convention is to incorporate a user- 
specified minimum difference in the trial proportions that sep- 
arate analyses: analysis IIj+1 is dropped if its distance from 

IIj falls below the minimum. 

5.3 Constrained Boundary Monitoring in Practice 
The two monitoring algorithms given above require the his- 
tory of analyses, as well as an estimate of future analyses. 
When implementing and constraining on the error spending 
scale, the procedure in Section 5.1 is the error spending ap- 
proach of Lan and DeMets (1983) and that in Section 5.2 is 
the approach of Pampallona et al. (1995). As noted in the 
introduction, the estimate of future analyses does not affect 
boundaries at the current analysis when implementing a de- 
sign on the error spending scale, provided that the planned 
maximal sample size is maintained and the variance is known. 
However, such operating characteristics as power and the dis- 

tribution of NM depend on the true schedule of future anal- 
yses. In addition, if overshoot or undershoot is possible or 
the variance is estimated, the error spent at the observed 
trial proportions will usually not follow the planned functional 
form; in fact, a new, observed error spending function results. 
With monitoring procedures that maintain power or that are 
implemented on other scales, the estimated future analysis 
schedule will influence the boundaries at the current analysis. 
As we have described, errors will be maintained nonetheless; 
what will not be maintained precisely is the planned boundary 
shape. 

As an example, suppose an investigator initiates a trial with 
an OBF boundary for a single planned analysis at a fixed max- 
imal sample size and then adds each interim analysis to the 
estimated schedule when it occurs. Application of the algo- 
rithm in Section 5.1 will generate boundary shapes close to 
those for a pretrial plan that accurately estimates the same 
complete analysis schedule. This procedure, which repeatedly 
accounts for the observed history of analyses, the current anal- 
ysis, and one final analysis, was proposed by Pampallona et al. 

(1995) for the maintenance of power with error-spending scale 
implementations. As adapted here to a fixed maximal sample 
size (i.e., without maintenance of power), implementations 
on any chosen scale will generate boundaries independent of 
future analyses. However, specification of a complete analy- 
sis plan, with revisions at each actual analysis, and design 
and implementation on the same scale, is equally valid sta- 
tistically. It will tend to generate stopping sets closer to the 
planned design, while still providing monitoring boards with 
forecasts essential for decision making, such as the probability 
of reversing a decision. 

5.4 Incorporating Variance Estimates 
The boundary transformations between various scales, such 
as from the implementation to the stopping set scale, are 
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one-to-one for a given pair of response variances, (ao, a2). 
When the variance is unknown, one option for incorporating 
variance estimates at analysis j is to fix the variance esti- 
mate at each prior analysis according to the statistical in- 
formation available at the time: Vk = V(Nk, Ok2, l)),k < j. 
When taking this approach, the boundary transformations 
are one-to-one and fixed for prior analyses. The sampling 
density becomes a function of the sequence of variance es- 
timates {V1,..., (Vk,..., . , . These facts imply that any con- 
straint scale will produce the same sequence of stopping sets, 
conditional on the final observed analysis schedule and the se- 

quence of estimated analysis schedules. They also imply that 
the sampling density is based upon estimates of statistical in- 
formation that might not be in the same proportion to their 
maximum as the known sample sizes are to the maximal sam- 

ple size. In fact, the estimated level of statistical information 

might, occasionally, decrease in j (i.e., in our setup, whenever 

Vk < Vj,k < j). 
An alternative procedure defines Vkj = V(Nk, &j, 2j), 

k < j, where the intuition is to incorporate all available sta- 
tistical information into the estimate of the sampling density. 
It should be evident that the two approaches are asymptoti- 
cally equivalent, provided that the incremental sample sizes, 

ntj, ? = 0, 1, are increasing in Nj for every j. With the 

latter, only boundary values on the constraint scale will re- 
main fixed at later analyses; alternate scale expressions of 
the boundaries will change as their transformations (from 
the constraint scale) are updated to reflect the most re- 
cent variance estimates. In addition, if the constraint scale 
is a function of the variance estimates, then updated esti- 
mates of the corresponding statistics at prior analyses may 
fall outside their continuation sets. For example, at a hy- 
pothetical second analysis, where the stopping set and con- 
straint scales correspond to a fixed-sample Z statistic, we 
know that z1 = 01//V < d*. However, it is possible that 

Z12 = 1/ V12 > d*, where the z12 is based upon the variance 
estimates at the second analysis, but dl remains constant, 
since it is the constrained boundary value. While these two 

properties are worthy of note, the decisions to be made at the 
current analysis depend upon the estimated approximate sam- 

pling density to compute current-analysis boundaries and/or 
adjusted estimates and p-values. For this reason, we pre- 
fer the second approach, using all of the available statistical 
information. 

In Table 3(a), the known variance in Table 2 has been re- 

placed by a sequence of variance estimates computed from a 
simulated normal sample. Because boundaries have been con- 
strained on the sample mean scale, the upper triangular of the 
error spending boundaries is no longer constant across rows. 
At the first analysis, the error spent is estimated to be 0.2887, 
which is a one-to-one transformation of the treatment effect 

boundary value, 8.505, conditional on the estimates of the 

group variances. At analysis 2, variance estimates are based 

upon 93 total observations. The much smaller estimate of the 
sum of variances (209) corresponds with a more than 70% re- 
duction in the estimate of the error spent at the first analysis 
(0.0862). As another example, consider the treatment effect 

boundary at the second analysis in Table 3(a). The bound- 

ary (5.038) has changed from its estimated value in the plan 

(4.923) and from the first analysis (6.071), due to the added 
earlier analysis with its associated constraint, and the more 

precise variance estimate at analysis 2. The slight increase 
in the estimated error spent at the sedond analysis, from 
the plan (0.3642) to the final analysis (0.3843), is a func- 
tion of the sequence of variance estimates and the sequence of 
constraint vectors applied at analyses 2-5. Because the final 
sum of variances is overestimated (i.e., 206.6 > 200), the true 

percentage of error spent at each analysis is (0.0756, 0.3699, 
0.6069, 0.7496, 0.9048), compared to the estimated (0.0824, 
0.3843, 0.6222, 0.7626, 1.0000). Note also that the sequence 
of Z scale boundaries along the diagonal is no longer con- 

stant, as in the original Pocock design ("Plan" column). The 

diagonal shows the boundaries that would be used to make 

stopping decisions, if the stopping set scale were specified to 
be the normalized Z scale. By following the columns down, 
below the diagonal, it is evident how the procedure repeat- 
edly fits the original design's boundary shape to then current 
and future analyses. 

Table 3(b) illustrates the induced error spending function 

implementation of the original Pocock design. Constraints 
at prior analyses are specified on the error spending scale. 
While the sample is identical in Tables 3(a) and 3(b), all the 

monitoring boundaries have changed. This is due to the use 
of an induced error spending function and to the different 
constraint scale. The latter accounts for the constant upper 
triangular of the error spending boundary matrix in Table 

3(b). In contrast, the transformations that map prior analy- 
sis boundaries to the treatment effect scale are now updated 
to reflect the most recent variance estimates. For instance, 
an estimated treatment effect of 8 at the first analysis in 
Table 3(b) would not have resulted in early stopping, but, 
when computing the sampling density with the updated vari- 
ance estimate, we eventually estimate that 8 is in the first 

stopping set. 
Also in Table 3(b), note that the estimated Z scale bound- 

aries running down the column below the diagonal are no 

longer constant: the interpolated error spending function 
boundaries transform to a constant on the normalized Z scale, 
in general, only at the information levels originally estimated 
in the plan (i.e., those used to construct the function). In 
Table 3(a), as the variance estimates stabilize with increasing 
sample size, the repeated refitting of the original boundary 
shape tends to stabilize the boundary shape over the current 
and future analyses. In contrast, the interpolated function is 
never corrected for changing analysis times or variance esti- 
mates. This may be why the variability of the Z scale bound- 

ary along the diagonal in Table 3(b) is markedly greater than 
that of Table 3(a). 

6. Discussion 

The distribution of variance estimates has an important in- 
fluence on the sequence of stopping rules generated during a 

flexibly monitored trial. The illustrations in Table 3 made use 
of the true variance at the planning stage, for comparison; in- 
accurate design-time variance estimates will also contribute to 
differences between the observed stopping rule and the plan. 
It is important to consider that, at the end of the trial, infer- 
ence and estimation make use of the final variance estimate: 
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Table 3 
Maintaining sample size; &2, &2 (,2 = a2 unknown) 1 2 \1 2 2U'T'V/~ 

Treat. Scale Const.a 3 
Power Estimate 

Sample Size 

final 

Upper Boundary, d 
(treat. effect scale) 

final 

Upper Boundary, d 
(error spending scale) 

final 

Upper Boundary, d 
(Z scale) 

final 

Err. Spend Const.b 
Power Estimate 

Upper Boundary, d 
(treat. effect scale) 

final 

Upper Boundary, d 
(error spending scale) 

final 

Upper Boundary, d 
(Z scale) 

final 

1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 

Plan 
200.0 

0.9750 

92.0 
184.1 
276.1 
368.1 

4.923 
3.481 
2.842 
2.462 

0.3642 
0.6309 
0.8351 
1.0000 

2.361 
2.361 
2.361 
2.361 

j:1 2 3 4 final 
284.6 209.0 202.6 213.3 206.6 

0.8885 0.9684 0.9732 0.9590 0.9704 
47 47 47 47 47 
92.3 93 93 93 93 

184.5 184.5 139 139 139 
276.8 276.8 276.8 231 231 
369 369 369 369 369 ] 

8.514 8.514 8.514 8.514 8.514 
6.077 5.044 5.044 5.044 5.044 
4.297 3.581 4.036 4.036 4.036 
3.508 2.924 2.861 3.331 3.331 
3.038 2.532 2.477 2.635 2.480 l 
0.2887 0.0862 0.0747 0.0943 0.0818 
0.5022 0.3972 0.3568 0.4247 0.3821 
0.7062 0.6481 0.5829 0.6855 0.6212 
0.8677 0.8425 0.8314 0.8402 0.7616 
1.0000 1.0000 1.0000 1.0000 1.00001 
2.446 2.855 2.900 2.826 2.871 
2.446 2.379 2.417 2.355 2.393 
2.446 2.379 2.364 2.304 2.341 
2.446 2.379 2.364 2.451 2.490 
2.446 2.379 2.364 2.451 2.343 l 

3 Plan j:1 2 3 4 final 
0.9750 0.9021 0.9694 0.9742 0.9688 0.9730 

1 - 9.045 7.751 7.637 7.835 7.713 
2 4.923 6.278 5.352 5.273 5.410 5.326 
3 3.481 4.174 3.579 4.328 4.440 4.371 
4 2.842 3.394 2.909 2.771 3.234 3.184 
5 2.462 2.936 2.516 2.464 2.471 2.433 
1 - 0.1856 0.1856 0.1856 0.1856 0.1856 
2 0.3642 0.3642 0.3664 0.3664 0.3664 0.3664 
3 0.6309 0.6309 0.6309 0.4994 0.4994 0.4994 
4 0.8351 0.8351 0.8351 0.8351 0.7338 0.7338 
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000] 
1 - 2.602 2.602 2.602 2.602 2.602 
2 2.361 2.530 2.527 2.527 2.527 2.527 
3 2.361 2.379 2.380 2.536 2.536 2.536 
4 2.361 2.369 2.369 2.291 2.381 2.381 
5 2.361 2.366 2.366 2.352 2.299 2.299 

Ho: 0 = 0 vs. H1: 0 = 4.40, a: = o2 = 100 (unknown), cd = 0.025. 
a Constrained on the treatment effect scale. 
b Constrained on the error spending scale with an error spending function interpolated from the original Pocock design. 

boundaries at early analyses, computed with less precise vari- 
ance estimates, become part of the history in the final best 
estimate of the sampling distribution. In this sense, they rep- 
resent part of the continuing refinement to the stopping rules 
and analysis schedule of the trial, where every stage takes 
proper account of the past. Planning-stage group sequential 
designs need to be presented to collaborators and monitor- 
ing boards as estimates to be refined over the course of the 
trial. 

With the availability of constrained boundary monitoring, 
design-time evaluations of group sequential stopping rules 
may focus upon their appropriateness to the scientific con- 
text. Important statistical operating characteristics can be 

maintained for the selected design, as is. In particular, design 
and implementation scales may reflect investigative rather 
than purely statistical requirements. In some cases, a less sci- 
entifically interpretable scale may be used for the stopping 
sets, such as the fixed-sample p-value scale, as mentioned in 
Section 5. However, when it is possible to use the treatment 
effect "stopping set" scale, it will have the advantage of ease 
of interpretation. 

The methods described here have been implemented in 
the software package S+SeqTrial, within parametric design 
families defined on a variety of scales. In addition to flexi- 
ble monitoring, design-time minimum, maximum, and exact 
constraints are supported. 
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RESUME 

Des regles d'arret sequentielles groupees sont souvent utilisees 
dans la conduite d'essais cliniques afin d'obtenir un traite- 
ment plus ethique des patients et de mieux prendre en compte 
les soucis d'efficacite. Du fait que l'usage de telles regles 
d'arret affecte les caracteristiques operationnelles du test 
d'hypothese, il est necessaire de choisir une regle d'arret ap- 
propriee dans la phase de preparation de l'etude. Neanmoins 
il est frequent que le nombre et les moments de realisation des 
analyses intermediaires ne soient pas connus avec precision au 
moment de la conception de l'essai, et donc la mise en aeuvre 
d'une regle d'arret particuliere doit permettre de determiner 
de maniere souple les moments des analyses intermediaires. 
Dans le present article nous considerons l'usage de contraintes 
de frontieres dans la mise en aeuvre des regles d'arret. Nous 
comparons cette approche quant elle est utilisee sur plusieurs 
echelles pour la statistique de test. Quant elle est appliquee 
sur l'echelle des probabilites de traverser les frontieres, cette 
approche est identique a l'approche par la fonction de con- 
sommation de l'erreur de Lan & DeMets (1983). 

REFERENCES 

Armitage, P., McPherson, C., and Rowe, B. (1969). Repeated 
significance tests on accumulating data. Journal of the 
Royal Statistical Society, Series A 132, 235-244. 

Eales, J. and Jennison, C. (1992). An improved method 
for deriving optimal one-sided group sequential tests. 
Biometrika 79, 13-24. 

Emerson, S. S. (1996). Software packages for group sequential 
tests. American Statistician 50, 182-192. 

Emerson, S. S. (2000). S+SeqTrial Technical Overview. Seat- 
tle: Insightful Corporation. 

Emerson, S. S. and Fleming, T. R. (1990). Parameter es- 
timation following group sequential hypothesis testing. 
Biometrika 77, 875-892. 

Jennison, C. and Turnbull, B. W. (2000). Group Sequen- 
tial Methods with Applications to Clinical Trials. London: 
Chapman and Hall/CRC. 

Kim, K. and DeMets, D. L. (1987). Design and analysis of 
group sequential tests based on the type I error spending 
rate function. Biometrika 74, 149-154. 

Kittelson, J. M. and Emerson, S. S. (1999). A unifying family 
of group sequential designs. Biometrics 55, 874-882. 

Lan, K. K. G. and DeMets, D. L. (1983). Discrete sequential 
boundaries for clinical trials. Biometrika 70, 659-663. 

O'Brien, P. C. and Fleming, T. R. (1979). A multiple testing 
procedure for clinical trials. Biometrika 35, 549-556. 

Pampallona, S. A. Tsiatis, A. A., and Kim, K. M. (1995). 
Spending functions for the type I and type II error proba- 
bilities of group sequential tests. Technical report, Depart- 
ment of Biostatistics, Harvard School of Public Health. 

Pocock, S. J. (1977). Group sequential methods in the design 
and analyis of clinical trials. Biometrika 64, 191-199. 

Slud, E. and Wei, L. J. (1982). Two-sample repeated signif- 
icance tests based on the modified Wilcoxon statistic. 
Journal of the American Statistical Association 77, 862- 
868. 

Whitehead, J. and Stratton, I. (1983). Group sequential clin- 
ical trials with triangular continuation regions. Biomet- 
rics 39, 227-236. 

Received August 2001. Revised May 2003. 
Accepted June 2003. 

777 


	Article Contents
	p.770
	p.771
	p.772
	p.773
	p.774
	p.775
	p.776
	p.777

	Issue Table of Contents
	Biometrics, Vol. 59, No. 4 (Dec., 2003), pp. i-vi+741-1198+vii-xix
	Volume Information [pp.vii-xiv]
	Front Matter [pp.i-vi]
	Diagnostics for Joint Longitudinal and Dropout Time Modeling [pp.741-751]
	Testing for Spatial Correlation in Nonstationary Binary Data, with Application to Aberrant Crypt Foci in Colon Carcinogenesis [pp.752-761]
	Random Effects Selection in Linear Mixed Models [pp.762-769]
	Flexible Implementations of Group Sequential Stopping Rules Using Constrained Boundaries [pp.770-777]
	Demographic Analysis from Summaries of an Age-Structured Population [pp.778-785]
	Open Capture-Recapture Models with Heterogeneity: I. Cormack-Jolly-Seber Model [pp.786-794]
	Joint Regression and Association Modeling of Longitudinal Ordinal Data [pp.795-803]
	Shape-Invariant Modeling of Circadian Rhythms with Random Effects and Smoothing Spline ANOVA Decompositions [pp.804-812]
	Smoothing for Spatiotemporal Models and Its Application to Modeling Muskrat-Mink Interaction [pp.813-821]
	Design Considerations for Efficient and Effective Microarray Studies [pp.822-828]
	Modeling Longitudinal Data with Nonignorable Dropouts Using a Latent Dropout Class Model [pp.829-836]
	Flexible Maximum Likelihood Methods for Bivariate Proportional Hazards Models [pp.837-848]
	Estimating the Generalized Concordance Correlation Coefficient through Variance Components [pp.849-858]
	Inference in Spline-Based Models for Multiple Time-to-Event Data, with Applications to a Breast Cancer Prevention Trial [pp.859-868]
	Semiparametric Estimation of Tag Loss and Reporting Rates for Tag-Recovery Experiments Using Exact Time-at-Liberty Data [pp.869-876]
	Semiparametric Analysis of Recurrent Events Data in the Presence of Dependent Censoring [pp.877-885]
	A Bayesian Hierarchical Model for Categorical Data with Nonignorable Nonresponse [pp.886-896]
	Modeling Tumor Growth with Random Onset [pp.897-906]
	Profile Analysis of 24-Hours Measurements of Blood Pressure [pp.907-915]
	Bayesian Inferences in the Cox Model for Order-Restricted Hypotheses [pp.916-923]
	Incorporating Covariates into Standard Line Transect Analyses [pp.924-935]
	Meta-Analysis of Diagnostic Test Accuracy Assessment Studies with Varying Number of Thresholds [pp.936-946]
	Discrete Proportional Hazards Models for Mismeasured Outcomes [pp.947-954]
	Modeling the Dependence between Number of Trials and Success Probability in Beta-Binomial-Poisson Mixture Distributions [pp.955-961]
	Bayesian Modeling of Age-Specific Survival in Bird Nesting Studies under Irregular Visits [pp.962-973]
	Abundance Estimation from Multiple Photo Surveys: Confidence Distributions and Reduced Likelihoods for Bowhead Whales off Alaska [pp.974-983]
	Using Local Correlation in Kernel-Based Smoothers for Dependent Data [pp.984-991]
	Penalized Discriminant Methods for the Classification of Tumors from Gene Expression Data [pp.992-1000]
	A New Dose-Finding Design for Bivariate Outcomes [pp.1001-1007]
	Estimating Predictors for Long- or Short-Term Survivors [pp.1008-1015]
	Minimum Hellinger Distance Estimation for Finite Mixtures of Poisson Regression Models and Its Applications [pp.1016-1026]
	Homogeneity Score Test for the Intraclass Version of the Kappa Statistics and Sample-Size Determination in Multiple or Stratified Studies [pp.1027-1035]
	Extensions and Applications of the Cox-Aalen Survival Model [pp.1036-1045]
	Semiparametric Estimation of Treatment Effect in a Pretest-Posttest Study [pp.1046-1055]
	Confidence Bands for Low-Dose Risk Estimation with Quantal Response Data [pp.1056-1062]
	Estimation of Competing Risks with General Missing Pattern in Failure Types [pp.1063-1070]
	Estimation of False Discovery Rates in Multiple Testing: Application to Gene Microarray Data [pp.1071-1081]
	A Bayesian A-Optimal and Model Robust Design Criterion [pp.1082-1088]
	Incorporation of Clustering Effects for the Wilcoxon Rank Sum Test: A Large-Sample Approach [pp.1089-1098]
	The Gamma-Frailty Poisson Model for the Nonparametric Estimation of Panel Count Data [pp.1099-1106]
	Issues of Cost and Efficiency in the Design of Reliability Studies [pp.1107-1112]
	Estimation in Capture-Recapture Models When Covariates Are Subject to Measurement Errors [pp.1113-1122]
	Consultant's Forum
	Nonidentifiability of Population Size from Capture-Recapture Data with Heterogeneous Detection Probabilities [pp.1123-1130]
	Graphical Exploration of Gene Expression Data: A Comparative Study of Three Multivariate Methods [pp.1131-1139]
	Maximum Likelihood Methods for Nonignorable Missing Responses and Covariates in Random Effects Models [pp.1140-1150]
	Exact Log-Rank Tests for Unequal Follow-Up [pp.1151-1157]
	Semiparametric Regression Splines in Matched Case-Control Studies [pp.1158-1169]
	Statistical Analysis of Noninferiority Trials with a Rate Ratio in Small-Sample Matched-Pair Designs [pp.1170-1177]

	Reader Reaction
	A Bivariate Frailty Model with a Cure Fraction for Modeling Familial Correlations in Diseases [pp.1178-1183]
	On Use of Bivariate Survival Models with Cure Fraction [pp.1184-1185]

	Correspondence
	Biological and Statistical Issues in Fitting Growth Curves to Capture-Recapture Data [pp.1186-1189]

	Book Reviews
	untitled [pp.1190-1191]
	untitled [p.1191]
	untitled [pp.1192-1193]
	untitled [p.1193]
	untitled [pp.1193-1194]
	untitled [pp.1194-1195]

	Brief Reports by the Editor
	untitled [p.1195]
	untitled [p.1195]
	untitled [p.1195]
	untitled [pp.1195-1196]
	untitled [p.1196]

	Back Matter [pp.1197-xix]



