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SUMMARY. Group sequential designs are often used for periodically assessing treatment efficacy during the

course of a clinical trial. Following a group sequential test, P-values computed under the assumption that
the data were gathered according to a fixed sample design are no longer uniformly distributed under the null
hypothesis of no treatment effect. Various sample space orderings have been proposed for computing proper
P-values following a group sequential test. Although many of the proposed orderings have been compared in
the setting of time-invariant treatment effects, little attention has been given to their performance when the
effect of treatment within an individual varies over time. Our interest here is to compare two of the most
commonly used methods for computing proper P-values following a group sequential test, based upon the
analysis time (AT) and Z-statistic orderings, with respect to resulting power functions when treatment effects
on survival are delayed. Power under the AT ordering is shown to be heavily influenced by the presence of
a delayed treatment effect, while power functions corresponding to the Z-statistic ordering remain robust
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under time-varying treatment effects.
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1. Introduction

Time to event is a common outcome in many clinical tri-
als. In such settings, the log-rank score statistic (Mantel,
1966) is typically used to compare the survival experience
of two randomly sampled groups. In addition, group se-
quential testing has become commonplace in clinical tri-
als where the need to achieve a high standard of patient
ethics is of utmost importance. Given the independent in-
crements structure of the log-rank statistic (Tsiatis, 1982),
group sequential stopping boundaries maintaining a prespec-
ified type I error rate can easily be computed via the se-
quential density derived by Armitage, McPherson, and Rowe
(1969). Such a stopping rule is often the basis for making
the decision of whether to adopt or discard a new experi-
mental treatment, but additional methods are necessary for
inference such as P-values, point estimates, and confidence
intervals.

In a frequentist framework, P-values are commonly used to
quantify the evidence for or against a hypothesis. In classical
hypothesis testing, a properly computed P-value is uniformly
distributed over the interval (0, 1) under the null hypothesis
of no treatment effect. Computation of the P-value depends
on the sampling scheme, however. For example, consider a

score statistic S~ N (V,V) resulting from a fixed sample
design. Under the null hypothesis, Hy:¢ = 0, the nominal
two-sided P-value is computed as p = 2(1 — ®(|z])), where
2z =38/(V)¥/? denotes the normalized Zstatistic. In the fixed
sample setting, p is uniformly distributed over the interval
(0, 1).

When data are gathered according to a group sequential
design it is possible to compute the fixed sample P-value, de-
fined as the nominal P-value corresponding to the test statis-
tic obtained upon stopping. However, this is not a proper
P-value as it is not distributed uniformly between 0 and
1 under the null hypothesis. To see this, consider a stop-
ping rule with continuation sets C; for j = 1,...,J, and
define the group sequential test statistic (M, S) as M =
min{l < j < J:5; ¢ C;} and S = Sy, where Sy denotes
the score statistic calculated at time M. For S; ~ N(¢V;,V}),
under the assumption of an independent increments struc-
ture the sampling density p(m,Sn,;v) for the test statis-
tic (m, Sp),m=1,...,J,5, € (—o00,0) is given by Armitage
et al. (1969) as

f(mvsm;w)a S’VTL ¢Cm7
0, otherwise,

P11, Soui ) = { W
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where the function f(j,S;;) is recursively defined as

L1 (Si—y

1 S; — s =Y . )
o \/—U_j¢ (T) fG—1,8)ds,

G, S55¢) =
J=2,....,m

withv; =V, =V, forj=2,...,m, and ¢(x) = e */2/(2m)/2

denoting the density of the standard normal distribution.
Figure 1 illustrates the effect of interim analyses on the

distribution of the normalized Z-statistic and the fixed sam-
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Figure 1. Comparison of sampling densities for the nor-

malized Z-statistic and fixed sample P-value statistic under
Hj:% = 0 when data are gathered according to a group se-
quential ( ) and fixed sample (----- ) design. The cho-
sen group sequential design is a level 0.05 two-sided symmetric
stopping rule having O’Brien—Fleming boundary relationships
with four equally spaced analyses. (a) Z-statistic (Hy:v¢ = 0)
and (b) P-value (Hy:¢ = 0).
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ple P-value under a level 0.05 two-sided symmetric stopping
rule having O’Brien—Fleming boundary relationships across
four equally spaced analyses (Emerson and Fleming, 1989).
Under Hy:¢¥ = 0 when data are gathered according to the
group sequential design, the distribution of the Z-statistic is
multimodal with jump discontinuities corresponding to the
stopping boundaries at each of the analyses (Figure la; solid
line). Subsequently, the fixed sample P-value is not uniformly
distributed between 0 and 1 (Figure 1b; solid line). For ref-
erence, when data are gathered according to a fixed sample
design the normalized Z-statistic follows a standard normal
distribution and, as noted above, the fixed sample P-value fol-
lows a uniform distribution (Figure la and 1b, respectively;
dashed lines).

Various orderings of the bivariate statistic (M, S) have
been proposed for the computation of proper P-values (ad-
justed for the stopping rule) that are uniformly distributed
over the interval (0, 1), and several authors have suggested
criteria by which these orderings should be judged. Emerson
and Fleming (1990) ranked orderings by the degree of preci-
sion to which treatment effect parameters could be estimated.
In particular, they compared the expected width of corre-
sponding confidence intervals. Chang, Gould, and Snapinn
(1995) compared power functions resulting from the analysis
time (AT) (Tsiatis, Rosner, and Mehta, 1984), sample mean
(Emerson and Fleming, 1990), Z-statistic (Chang, 1989), and
score statistic (Rosner and Tsiatis, 1988) orderings. Recently,
Cook (2002) compared these same orderings by considering
the degree to which adjusted P-values agree with likelihood-
based inference.

Emerson and Fleming (1990) found that the sample mean
ordering provided uniformly shorter confidence intervals than
the AT ordering and outperformed the Z-statistic ordering
in some instances. Both Chang et al. (1995) and Cook (2002)
concluded that the Z-statistic ordering is preferred under their
respective criteria; however, Chang et al. (1995) found that
the difference between the Z-statistic, AT, and sample mean
orderings was relatively small for reasonably sized alterna-
tives. These studies also agreed that the score statistic order-
ing performed poorly for alternatives sufficiently far from the
null hypothesis. Finally, Jennison and Turnbull (2000) recom-
mended the use of the AT ordering because (i) it ensures that
adjusted P-values are less than the specified significance level
if and only if the null hypothesis is rejected, and (ii) adjusted
P-values do not condition on information levels beyond the
stage at which the trial is stopped. Although (i) is guaran-
teed for all four of the orderings mentioned above, the AT
ordering is the only one for which (ii) also holds.

Each of the authors noted above only considered these or-
derings in the case of time-invariant treatment effects, as with
proportional hazards models. However, treatment effects on
survival can frequently be delayed due to subgroup differ-
ences in which a certain portion of patients cannot be ade-
quately treated or because the mechanistic path of the treat-
ment may be long (see, for example, Abrams et al., 1994).
Due to heavy dependence of the AT ordering on the tim-
ing of observed treatment effects, it is of interest to compare
the power functions obtained under this ordering with those
of the Z-statistic ordering which is independent of stopping
time. We do not consider the sample mean ordering in this
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manuscript because of our focus on nonproportional hazards:
Because the log-rank statistic does not consistently estimate
the same parameter over time in this setting, there is no well-
defined estimate on which to base an ordering. In Section 2
we describe the framework used for comparing the AT and
Z-statistic orderings and in Section 3 we contrast power func-
tions obtained under these orderings for various nonpropor-
tional hazards configurations. Section 4 concludes with a brief
discussion of the choice of outcome space orderings following
a group sequential test and the implication of our results to
clinical trials with longitudinal outcomes.

2. Comparison Framework

We consider the common clinical trial scenario of compar-
ing the survival time of two groups, and assume the effect of
treatment on the hazard for failure varies with time. In partic-
ular, we consider the settings of early and late diverging haz-
ards, as depicted by the survival configurations in Figure 2.
For illustration purposes it was assumed that baseline sur-
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Figure 2. Survival configurations used to produce power

functions in the early (a) and late (b) treatment effect
settings.
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vival was distributed Exp(0.5) (median survival of approxi-
mately 1.4 years) in the early treatment effect setting and
Exp(0.3) (median survival of approximately 2.3 years) in the
delayed treatment effect setting. To reflect the staggered pa-
tient accrual rates typically encountered in clinical trials, pa-
tient entry times were taken to be uniformly distributed over
3 years with an additional follow-up of 1 year. Treatment ef-
fects were defined by two parameters: 7 denoting the time
at which treatment effects on the hazard scale start or stop,
and 0 denoting the log-hazard ratio comparing treatment to
control. For each value of 7, sample sizes were adjusted to
maintain 80% power for a fixed sample level 0.025 log-rank
test when 6 was assumed to be log(0.5).

In the current manuscript, we focus on postanalysis in-
ference when P-value adjustment is based on the AT and
Z-statistic orderings, defined as:

AT ordering (Tsiatis et al., 1984).

(M, 51) < (Ms, S)

M; < M5 and S < z, Va € Cpyy, Or
ifft { M;=M,;andS; <S5, or
M; > M, and Sy > x, Vo € Chy,.

Z-statistic ordering (Chang, 1989).

iff 21 = (S1/ /W) < ($2//Va) = 2.

The Z-statistic ordering was originally introduced by Chang
(1989) as the likelihood ratio ordering, where it was used for
the computation of confidence intervals following group se-
quential testing. Because we are presently only concerned with
P-value calculations, it is sufficient to only consider the likeli-
hood under the null hypothesis of no treatment effect, thereby
basing our decision on the value of the Z-statistic.

Power functions, defined as pr{P-value < « | 7, 6} (Chang
et al., 1995), were estimated under level 0.025 one-sided
Pocock (1977) and O’Brien and Fleming (1979) stopping rules
with four analyses. For each combination of 7 and 6, the prob-
ability of obtaining a P-value < a € (0, 0.05) under the AT
and Z-statistic orderings was estimated based upon 25,000
simulations. Our interest in the power function is because the
probability of observing, say p < 0.001, is of particular impor-
tance when a single clinical trial is to be used as a “pivotal
study” for regulatory approval.

Without prior knowledge of a time-varying treatment ef-
fect, analyses are generally equally spaced in information time
with the goal of balancing loss of statistical power against the
potential for early stopping. In the event that one had a priori
knowledge regarding a time-varying effect, it may be benefi-
cial to shift analyses earlier or later in time. However, such
knowledge is typically scarce, and the price paid for incor-
rectly assuming a particular treatment by time interaction
may be a substantial loss in power or a significant increase
in sample size. In the simulations presented here, we assumed
no prior knowledge of a time-varying effect and adopted the
common strategy of spacing analyses equally in information
time.

Tests for survival differences were based upon the log-rank
statistic. In practice, if one had scientific or clinical reason
for believing survival differences at one time point were more

(M, 51) < (Ms, S)
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or less important than survival differences at other times, a
weighted version of the log-rank statistic such as a member of
the G”7 family (Fleming and Harrington, 1991) may be more
appropriate. With this said, we have chosen to focus on the
(unweighted) log-rank statistic because such scientific knowl-
edge is generally unknown at the start of a trial when the
statistical protocol is to be defined. In this case, the log-rank
statistic typically serves as a standard statistic for comparing
survival distributions.

Although analyses were equally spaced in information time,
for interpretation it is useful to consider the calendar times
corresponding to each interim analysis. Under the assump-
tion of Exp(\) survival times, Unif(0, R) accrual, and testing
based upon the log-rank statistic, the information fraction at
calendar time ¢ can be computed as (see, for example, Lan,
Rosenberger, and Lachin, 1995)

R TR Y
R el e t<R,
1+ _[e—/\T —A(T—R)]
AR
n(t) = : . @
14 e M _ g AR
+ /}R [e e ] Cien
14 — [T _ g~ MT-R)
+ )\R[e e ]

where T is the maximal calendar duration of the trial. Thus,
from equation (2) the calendar times of analyses in our com-
parison framework could be obtained under the null hypoth-
esis of no treatment effect assuming R = 3 and T" = 4 with
four analyses equally spaced in information time, correspond-
ing to n(t) = 0.25, 0.50, 0.75, and 1.0. For example, under
the early treatment effect setting with baseline survival dis-
tributed Exp(0.5), interim analyses occurred at roughly ¢t =
19.6, 29.3, 37.6, and 48 months under the null hypothesis.
Similarly, for the late treatment effect with baseline survival
distributed Exp(0.3), interim analyses occurred at roughly ¢ =
20.9, 30.6, 38.6, and 48 months under the null hypothesis. Un-
der nonproportional hazards alternatives, analyses were per-
formed after D/4, D/2, 3D/4, and D events had occurred,
where D denotes the maximal number of planned events.

3. Power Functions under Nonproportional Hazards

By definition, under the AT ordering, once the decision to
continue past an interim analysis is made, computed P-values
are bounded from below by the probability, under the null
hypothesis, of observing a partial sum statistic greater than
or equal to the stopping boundary at that time. That is, the
P-value will be bounded from below by the cumulative type I
error spent over all preceding analyses. Table 1 displays the

Table 1
Information growth and error spent at each analysis for the
one-sided Pocock and O’Brien—Fleming stopping rules

Error spent

Proportionate
Analysis information Pocock O’Brien—Fleming
1 0.25 0.009 <0.001
2 0.50 0.016 0.002
3 0.75 0.021 0.011
4 1.00 0.025 0.025
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Table 2
Simulated probability of attaining a P-value < «
Treatment “
effect Ordering  0.000625 0.001 0.01 0.025

Proportional hazards
Fixed sample

Both 0.359 0.402 0.687 0.802
Pocock

Z-statistic 0.078 0.106 0.466 0.724

Analysis time 0.021 0.036 0.226 0.717

O’Brien—Fleming
0.171 0.228 0.616 0.795
0.089 0.117 0.530 0.792

Z-statistic
Analysis time

Early effect
Fixed sample

12 months Both 0.367 0.41 0.694 0.804
18 months Both 0.375 0.42 0.698 0.802
Pocock
12 months Z-statistic 0.884 0.908 0.985 0.999
Analysis time 0.891 0.915 0.996 0.999
18 months Z-statistic 0.333 0.395 0.763 0.924
Analysis time 0.244 0.291 0.787 0.924
O’Brien—Fleming
12 months Z-statistic 0.979 0.984 0.992 0.992
Analysis time 0.980 0.986 0.992 0.992
18 months Z-statistic 0.646 0.700 0.861 0.884
Analysis time 0.648 0.701 0.877 0.884
Delayed effect
Fixed sample
6 months Both 0.365 0.41 0.697 0.808
12 months Both 0.379 0.426 0.702 0.801
Pocock
6 months  Z-statistic 0.096 0.135 0.472 0.696
Analysis time  <0.001 0.001 0.031 0.685
12 months Z-statistic 0.186 0.231 0.526 0.694
Analysis time  <0.001 0.001 0.010 0.683
O’Brien—Fleming
6 months  Z-statistic 0.147 0.199 0.593 0.792
Analysis time 0.013 0.018 0.376 0.789
12 months Z-statistic 0.205 0.259 0.607 0.795
Analysis time 0.001 0.001 0.168 0.792

cumulative type I error spent for level 0.025 one-sided Pocock
and O’Brien—Fleming stopping rules with four equally spaced
analyses. Under the AT ordering, if treatment effects do not
appear until the third analysis, the lowest P-value which
could be obtained is 0.016 and 0.002 under the Pocock and
O’Brien—Fleming designs, respectively. In contrast, because
the Z-statistic ordering does not consider the analysis stage,
there is no lower bound for P-values computed under this or-
dering, regardless of the stopping time.

Table 2 displays the simulated probability of obtaining
a P-value < a, a = 0.000625, 0.001, 0.01, 0.025, for 6 =
log(0.5) under proportional hazards, early, and delayed treat-
ment effects. For reference, power functions under a level
a = 0.025 fixed sample test with power held constant at
80% are given. Note that P-values under the two orderings
are equal for the fixed sample test. Under proportional haz-
ards and early treatment effects (7 = 12 and 18 months), the



1.0
n

6

= log(05)

o8
n

o
6

= log(0.7)

Pr(pValue <
0.4
n

0z
n

0.0
L

T T T T T T T
003 004 005 00 0ot 002 003 004 005

1.0
h

£

=1og(05)

08
n

o6
n

= log(0.7)

Pr(pvalue < )
0.4
n

0.2
n

0.0
L

T T T T T T
003 004 005 00 001 002 003 0.04 0.05

o o

(f)

550 Biometrics, June 2005
. o
=log(0.5) =l0g(0.5)
31 31
0=l0g(0.7)
g o g o
% % 0=log(0.7)
= 2 < 34
E E
3 3
0=log(1)
o] od
g g
00 0.01 0.02 0.03 0.04 0.05 00 0.01 0.02
o
(a) (b)
9=log(0.5) 9=log(0.5)
° 9=1og(0.7) °
g el g o]
v °© v °
F 3 0=log(0.7)
2 2
T3 |
3 3
f=log(1)
e T T T T T T e T T T
00 001 0.02 003 004 005 00 001 0.02
o
(d) (e)
Figure 3. Simulated probability of attaining a P-value < « when the Z-statistic (

) and AT ordering (----- ) are applied

to data sampled under a time-delayed treatment effect. (a) Proportional hazards, (b) 6-month delay, and (c) 12-month delay
were constructed under a Pocock stopping rule. (d) Proportional hazards, (e) 6-month delay, and (f) 12-month delay were

constructed under an O’Brien-Fleming stopping rule.

AT and Z-statistic orderings result in comparable power esti-
mates for both the Pocock and O’Brien—Fleming designs. As
expected, both group sequential stopping rules attain much
higher power than the fixed sample design when early treat-
ment effects wane over time. Under delayed treatment effects,
Table 2 reveals that power under the AT ordering for a <
0.025 can be substantially lower than that based upon the
Z-statistic ordering. For example, when treatment effects are
delayed 12 months and an O’Brien—Fleming boundary is ap-
plied, the probability of obtaining a P-value < 0.01 under
the Z-statistic ordering is 0.607 compared to 0.168 under the
AT ordering. For the same treatment effect setting, using a
Pocock boundary results in a probability of 0.526 for obtain-
ing a P-value < 0.01 under the Z-statistic ordering compared
to 0.010 under the AT ordering.

Figure 3 displays power curves for the Pocock and O’Brien—
Fleming designs under proportional hazards and delayed
treatment effects. Power functions under the two orderings
are relatively comparable in the proportional hazards setting,
although they do separate for large hazard differences in the
case of the Pocock design. In contrast, under 6- and 12-month
delayed treatment effects, the power function under the
Z-statistic ordering easily dominates that under the AT or-
dering for values of o < 0.025. The large discrepancy between
power functions in this setting is attributable to performing
interim analyses prior to the onset of treatment benefit, thus
resulting in a delay in the rise of the AT power function.

While the power curves displayed here are specific to the
schedule of analyses and test statistic we have chosen to use,
they clearly demonstrate a potential drawback of the AT or-
dering. In general, if the analysis schedule is such that testing
occurs prior to the initiation of treatment effects or if the cho-
sen test statistic is unable to sufficiently detect late occurring
treatment differences at the time of early analyses, the power
function corresponding to P-values computed under the AT
ordering will be adversely affected.

4. Discussion

Both the AT and Z-statistic orderings have been proposed
for defining the extremity of data and are commonly used for
computing proper P-values following a group sequential pro-
cedure. In the case of a constant treatment effect (e.g., pro-
portional hazards), power functions under either the AT or
Z-statistic ordering tend to be fairly comparable. Intuitively
this is reasonable because large discrepancies in computed
P-values can only appear in the event that a trial continues
past early analyses and obtains an extremely large Z-statistic
at a later analysis. Jennison and Turnbull (2000) recommend
the use of the AT ordering because it does not require in-
formation regarding group sizes past the stopping stage and
claim that the overshoot described above is unlikely. Clearly,
if treatment effects are time invariant, the probability of such
an overshoot is quite low. However, if one considers a delayed
treatment effect as we have, it is possible that early analyses
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will be performed prior to the time at which survival differ-
ences are revealed, while later analyses occurring after the
initiation of treatment effect can detect large differences be-
tween the comparison groups.

The Z-statistic ordering is often preferred because it con-
siders the magnitude of the estimate of treatment effect when
defining extreme results. Because of this, no lower bound is
placed upon P-values computed under the Z-statistic ordering
and these P-values tend to agree largely with likelihood-based
inference (Cook, 2002). Under a constant treatment effect the
Z-statistic ordering tends to lead to slightly lower P-values
when compared to the AT ordering, though the difference in
the two orderings is not substantial under reasonably sized
alternatives. However, when treatment effects are delayed, we
have demonstrated that P-values calculated under the AT or-
dering can be substantially lower than those calculated un-
der the Z-statistic ordering. For this reason, the Z-statistic
ordering is recommended in group sequential settings where
nonproportional hazards may be present.

Because the log-rank statistic is nonparametric, neither the
sample mean ordering investigated by Emerson and Fleming
(1990) nor their criteria of a good estimator, which are based
upon the precision of parameter estimates, are directly appli-
cable to this investigation. However, in the case of uncensored
outcomes measured longitudinally, the potential for time-
varying treatment effects does exist, and the sample mean
ordering would be another possibility as results could be or-
dered by a single parameter estimate (e.g., an average slope
over time). Under delayed treatment effects in the longitudi-
nal setting, similar problems would certainly exist with the
AT ordering, but further investigation of the performance of
the Z-statistic and sample mean orderings is needed.
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