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Symmetric Group Sequential Test Designs 

Scott S. Emerson* and Thomas R. Fleming 
Department of Biostatistics, SC-32, University of Washington, 

Seattle, Washington 98195, U.S.A. 

SUMMARY 

In Phase III clinical trials, ethical considerations often demand interim analyses in order that the 
better treatment be made available to all patients as soon as possible. Group sequential test designs 
that do not treat the hypotheses symmetrically may not fully address this concern since early 
termination of the study may be easier under one of the hypotheses. We present a one-parameter 
family of symmetric one-sided group sequential designs that are nearly fully efficient in terms of the 
average sample number. The symmetric tests are then extended to a two-sided hypothesis test. These 
symmetric two-sided group sequential tests are found to have improved overall efficiency when 
compared to the tests proposed by Pocock (1977, Biometrika 64, 191-199) and O'Brien and Fleming 
(1979, Biometrics 35, 549-556). Tables of critical values for both one-sided and two-sided symmetric 
designs are provided, thus allowing easy determination of sample sizes and stopping boundaries for a 
group sequential test. Approximate tests based on these designs are proposed for use when the number 
and timing of analyses are random. 

1. Introduction 

A Phase III randomized clinical trial is concerned with assessing the relative efficacy of 
various treatment interventions in human subjects. The hypotheses to be tested in such a 
trial may be one-sided (e.g., testing whether a new treatment is more effective than placebo) 
or two-sided (e.g., testing which of two treatments is better with some allowance for a 
decision of equality). It is widely recognized that the use of human subjects demands 
interim analyses of the data. It would be a violation of medical ethics to continue patients 
on an inferior treatment regimen when sufficient evidence is available to decide which 
treatment is better. However, truly sequential designs, in which an analysis is performed 
following each observation, are most often impractical. This paper is concerned with the 
use of one alternative approach that has received widespread attention: the group sequential 
design (Pocock, 1977, 1982; O'Brien and Fleming, 1979; DeMets and Ware, 1980, 1982). 
We restrict our attention to the case of inference about the mean of a normally distributed 
response with known variance. As delineated in Whitehead (1983), this case is applicable 
to the exact or asymptotic distribution of a wide variety of test statistics commonly 
encountered in clinical trials. Generalization of the results of this paper to other exact 
distributions is also straightforward. 

We consider a group sequential design in which we have potential independent obser- 
vations Yj -N(,u, 2) for i = 1, . . ., m and j = 1, .. . , ni. For i = 1, . . ., m, we define the 
statistics Xi I Yjj For k = 1, ..., m, Sk - '_ Xi, so Xi N(n1 A, n oa) and 
Sk N(At E 

k 
y I s, a2 E 

k 
I n1). We perform a test of the null hypothesis Ho: A = AO against 

* Current address: Division of Biostatistics, Box J-2 12, J. Hillis Miller Health Center, University of 
Florida, Gainesville, Florida 32610, U.S.A. 

Key words: Clinical trial designs; Group sequential designs; Interim analyses; Stopping boundaries; 
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some specified alternative H. by partitioning the outcome space for So, into stopping sets 
-?() and _'(1 and continuation set A for k = 1, ..., m. Beginning with k = 1, if Sk EE Al 

we continue collecting data to observe S,,,,. We require that '7- 0, the empty set, 
to guarantee that the study terminates by the mth analysis. We define statistics M 
mink: Sk t Fk. and S SAl. The event {M = kJ corresponds to stopping a study 
after the kth analysis and deciding in favor of or against the null hypothesis according to 
S E 520) or S E <2'), respectively. The operating characteristics of this test are governed 
by the particular choice for the continuation and stopping sets. These operating charac- 
teristics can be determined through the method of recursive numerical integration as de- 
scribed in Armitage, McPherson, and Rowe (1969). 

In this paper we are concerned with the choice of continuation and stopping sets that 
will treat the null and alternative hypotheses symmetrically with respect to early stopping. 
We shall assume that the variance a2 is known and that the numbers of subjects accrued 
between analyses, ni, i = 1, . . ., m, are free to be fixed by design. We further assume that 
the alternative specified in the hypothesis test represents the minimal improvement effected 
by a new treatment that will be of clinical importance. Formal stopping rules for clinical 
trials are usually based on some single measurement of treatment outcome. In reality, there 
are multiple secondary factors that influence the clinical value of a new treatment. Thus, 
the specific value chosen for the alternative hypothesis is assumed to be based on the 
therapeutic index, which will contrast improvements in treatment efficacy against differ- 
ences between the treatments in toxicity, side effects, cost, administration, and other non- 
outcome-related characteristics of the treatment. 

In Section 2, we first consider the setting of one-sided hypothesis testing for a fixed 
maximum number of analyses, m, and with equal group sizes (i.e., ni = n). In Section 3 we 
discuss the efficiency of these one-sided symmetric designs in a one-parameter family 
of group sequential tests. These results are then extended to two-sided tests in Section 4. In 
Section 5 we discuss the problem of testing when the number of analyses and the sizes 
of groups accrued between analyses are random. Our results are summarized 
in Section 6. 

2. One-Sided Hypothesis Tests 

Suppose we wish to test the hypotheses Ho: At - Ao versus HI: At 3 AI1, where AI1 > Lo. We 
assume that the maximum number of analyses, m, is fixed in advance, and that the sizes 
of the groups accrued between analyses are all equal to n, which is free to be fixed by 
design. Designing our test will be made easier by first applying a location-scale trans- 
formation on the response variables in order to standardize the problem. Under the 
transformations 

1J X-- A 

i _X 
j=1 ii 

S x - , (1) 
i=J S 

we have that XV* N(0, 1) under Ho, and X* N(b, 1) under H., where 6, 
= 

,n(Au - ,L)/1u. Thus, we may restrict our attention to the observation of Xj*, 
i = 1, ..., m, where X*- N(6, 1). For k = 1, ..., m, we derive continuation sets i* and 
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stopping sets 
_2*(?) 

and J,<(') to obtain a test of H*: ( < 0 versus H*: ( 
,> 63 that has 

the desired operating characteristics. We can then determine the continuation and stop- 
ping sets for the original test of Heo versus H. by applying the inverse transformation to 
A,;*, 5c(0), and *<'). Since we have assumed that the value of n is to be determined in 
the process of designing the clinical trial, in this transformed test we are free to let the 
value of 6, be set by the design. The value of 6, that is dictated by a particular design will 
determine the value of n according to the formula 

n = Il (2) 

Consider first the case of m = 1, the fixed sample case. We have that S* = X*, and the 
uniformly most powerful level ae test would prescribe that the critical region ,*"1) would 
consist of the interval [z' o), where z(-) denotes the upper ar quantile of the standard 
normal distribution. The power to detect the alternative is given by d(b) = 1 - b(z () - ), 
where (D(x) is the standard normal distribution function. In experimental design, we usually 
fix the sample size n to achieve some desired power under the alternative. However, as 
described above, in this transformed setting we may equivalently find an alternative that 
has the prescribed power. If we choose 6, = 2z (a) so that 1(( I) = 1 - o, our test will treat 
the hypotheses symmetrically in the sense that both the Type I and Type II statistical errors 
have probability equal to ax. Interchanging the role of null and alternative values for 
the mean will not alter the boundary of the critical region. Furthermore, the usual 
100(1 - 2a)% two-sided confidence interval constructed about the observed value will 
perfectly discriminate between the null and alternative hypotheses. That is, such a confi- 
dence interval has zero probability of containing both the null and alternative hypothe- 
sized means. 

The ethical constraints of clinical trials might suggest such a symmetric treatment of the 
hypotheses. The goal is to provide all patients with the best treatment as soon as there is 
sufficient evidence to make such a decision, regardless of whether the better treatment is 
the newer or existing treatment. However, in many of the group sequential designs that 
have been proposed, this symmetry is lacking. 

The earliest proposals for group sequential designs were primarily two-sided tests. 
Following the repeated significance testing of Armitage et al. (1969), Pocock (1977) 
considered tests in which the usual fixed sample statistic, I S*/IIk 1, would be compared to 
a critical value c(a) at each analysis, instead of z (a) as would be used in a fixed sample 
design. If the test statistic were larger than the critical value at some analysis, the study 
would terminate with rejection of the null hypothesis. Otherwise, the study would continue 
until the mth analysis, at which time if the test statistic were less than the critical value, the 
study would terminate with failure to reject the null. The critical values c(7) resulting in 
level ae sequential tests were tabulated for various choices of m and af. O'Brien and Fleming 
(1979) proposed a design that would allow testing more conservatively at the earlier analyses 
and near the nominal level at the final analysis by comparing the statistic I S* I to an 
appropriate critical value cs' at each analysis. Both of these designs have continuation sets 
that are symmetric about the origin and are determined only by the null distribution. 

A naive approach to determining group sequential boundaries for a one-sided hypothesis 
test is to use the two-sided boundaries above and to interpret early termination of a study 
with large negative values for S* as failure to reject the null. By way of example, such an 
adaptation of the O'Brien-Fleming design would define continuation and stopping sets by 
A,* = (-c' /'(), c'/()), S*1(0) = (-cc, c('a)], and S`(1) = [c'('), co), for k = 1, . . . , m - 1, 
with 7= 0- ?)*7(O) = (-?Cp)), and ,*(1) = [cra), oo). 
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DeMets and Ware (1980) noted that the use of these designs for testing a one-sided 
hypothesis would terminate a study much earlier for evidence inconsistent with the null 
(when the alternative is true) than for evidence inconsistent with the alternative (when the 
null is true). They proposed a test modelled after the sequential probability ratio test of 
Wald (1947) which would have the upper boundaries of the continuation regions deter- 
mined by the null hypothesis while the lower boundaries would be set by considering the 
alternative. Neither this design, nor the hybrid of their lower boundary and an O'Brien- 
Fleming upper boundary (DeMets and Ware, 1982), was symmetric in the treatment of the 
hypotheses. 

In deriving group sequential designs that satisfy our requirements for symmetry, we 
consider tests having continuation and stopping sets of the form 

A,* = (a,, b, Y 59*(O) - (-o, ak] and s*(') = [bk, co), (3) 

for k = 1 ... m. We will fix the values of the b,'s according to the null distribution, and 
those of a,'s according to the alternative distribution. Thus, in order to treat the hypotheses 
symmetrically we must have that 

a,= k31 - b,. (4) 

The constraint that WF = 0 demands that a,,, = b,,, and we obtain 

= 2b, (5) 
m 

The choice of particular values for the bk's is now arbitrary subject to the constraint that 
bk> ak = ki- bk, k = 1, ..., m - 1. Once specific values have been chosen for these 
boundaries, we can determine the operating characteristics of the test by numerically 
integrating the sampling density according to the method of Armitage et al. (1969). The 
space of all such sequential tests is too large for most purposes, and we usually focus on a 
smaller set of designs by imposing some relationship between successive stopping bounda- 
ries. For instance, we can derive boundaries by generalizing the O'Brien-Fleming (1979) 
and Pocock (1977) designs. In the case of the O'Brien-Fleming type design for a level ae 
test, we would want to find a critical value c' such that fixing bk = c' for k = 1, . . ., m 
would result in a test having size Pr(S E YA *(l) - 6 = 0) = a. Similarly, a Pocock-type design 
would find a critical value c so that the test is of the correct size when b, = aikic fork = 1, 
... m. These critical values are a function of m, the maximum number of analyses, and 
ax, the level of the test. 

A natural extension of these designs is to consider the one-parameter family of boundary 
relationships of Wang and Tsiatis (1987). We find a critical value Cm,), indexed by the 
parameter p, such that the one-sided symmetric test defined by setting 

bk= Vc (a) (6) 

will have size ae under the null hypothesis. Lower values for the parameter p correspond to 
increasingly conservative testing at the earlier analyses. A design based on p = 0 corresponds 
to the O'Brien-Fleming symmetric test, while p = .5 is the Pocock symmetric test. We note 
that a design based on p = 1 degenerates to a fixed sample design. 

It is through the selection of the parameter p that a researcher can allow for determination 
of secondary questions related to a treatment. Higher choices of p result in a higher 
probability of terminating a study at an earlier analysis. In such a case, there might be little 
opportunity to assess the long-term efficacy or side effects of the treatment. Choosing a 
lower value for p will allow protection against marked differences between treatments while 
ensuring that ample information is available for measuring the secondary factors when the 
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treatments are more similar with respect to the primary outcome. Selection of this parameter 
is most often quite subjective. 

The major advantage of restricting our attention to such a family of boundary relation- 
ships is that each one-sided symmetric test design is dependent on a single critical value. 
Thus, we can easily tabulate these designs for various values of m, (x, and p. Table 1 
provides the critical values forp = 0, .1, .2, .3, .4, .5; m = 2, . . ., 10; and ae = .01, .025, 
and .05. These were found by numerically integrating the density of the sequential statistic 
according to the methods used by Armitage et al. (1969) in a bounded search for the critical 
value yielding a test of the correct size. A PASCAL program to perform the search and 
numerical integration is available from the authors upon request. 

From Table 1, one can determine a level ae group sequential test design having a 
maximum of m analyses equally spaced in terms of subject accrual. The choice of design 
parameter p reflects the degree to which one desires to test conservatively at earlier analyses, 
with small p allowing testing near the fixed sample critical value at the last analysis. For a 
given choice of p, m, and aX, the boundaries of the stopping sets under the transformation 
(1) can be determined according to equations (4)-(6). The size of the test under the 
transformed null hypothesis is ax, and the power to detect ( = 61 is 1 - a. The sample size 
for the untransformed test is determined according to (2). 

Table 1 
Critical values (c'?1", )for one-sided symmetric sequential design 

Design parameter (p) 

m 0 .1 .2 .3 .4 .5 

a = .05 
2 2.358 2.222 2.102 1.998 1.909 1.834 
3 2.922 2.651 2.420 2.227 2.068 1.941 
4 3.404 3.005 2.671 2.399 2.182 2.013 
5 3.831 3.311 2.883 2.538 2.270 2.065 
6 4.218 3.583 3.067 2.657 2.341 2.106 
7 4.575 3.830 3.231 2.760 2.402 2.140 
8 4.908 4.056 3.379 2.851 2.454 2.168 
9 5.221 4.267 3.514 2.933 2.501 2.192 

10 5.518 4.463 3.639 3.008 2.542 2.213 

a = .025 
2 2.790 2.620 2.472 2.344 2.236 2.149 
3 3.447 3.115 2.831 2.594 2.402 2.253 
4 4.006 3.524 3.117 2.784 2.521 2.323 
5 4.502 3.877 3.358 2.939 2.614 2.373 
6 4.952 4.191 3.568 3.071 2.690 2.413 
7 5.367 4.475 3.755 3.186 2.754 2.445 
8 5.754 4.736 3.924 3.288 2.810 2.472 
9 6.117 4.979 4.079 3.380 2.859 2.495 

10 6.461 5.205 4.222 3.464 2.903 2.515 

a = .01 
2 3.298 3.088 2.904 2.745 2.614 2.511 
3 4.063 3.662 3.314 3.022 2.788 2.611 
4 4.714 4.134 3.641 3.234 2.913 2.678 
5 5.290 4.541 3.917 3.408 3.012 2.726 
6 5.813 4.904 4.157 3.555 3.093 2.764 
7 6.295 5.232 4.371 3.685 3.162 2.795 
8 6.745 5.534 4.564 3.799 3.221 2.820 
9 7.168 5.814 4.741 3.903 3.274 2.842 

10 7.568 6.076 4.905 3.998 3.322 2.861 
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Example Suppose we have independent observations Yj- Bernoulli(r) (I = 1, ...,n; 
i= 1, .. ., m) and we wish to test Ho: 7r - .3 versus H1: 7r 3 .6 using a level ae = .05 one- 
sided symmetric group sequential test having a maximum of m = 4 analyses and having 
O'Brien-Fleming boundary relationships (p = 0). Exact symmetric boundaries based on 
the binomial distribution (instead of the normal distribution) could be derived for this test, 
but we shall instead explore the use of the normal-theory formulas for this case. By the 
central limit theorem, we have that Xi 1Y Yj N(nr, nr(1 - r)) for n sufficiently 
large. Under these conditions, the equations (2) and (4)-(6) hold approximately when A0O 
E(Y, I HO), AlE(Yij I HI), and o-2 = var(Yij). Obviously, some error is introduced by the 
mean-variance relationship of the binomial distribution: var(Y >j I Ho) $ var(Yj I HI). 

From Table 1, we find the critical value C(.05) = 3.404. Using equations (5) and (6), we 
find 61 = 1.702, and using equation (2) we have n = 6.76 for o2 = .21 (under HO), n = 7.72 
for U2 = .24 (under H1), and n = 8.05 for U2 = .25 (if r = .5, the worst case in terms of 
variance). Thus, we might choose a group sample size of n = 8. Determining the boundaries 
according to equations (4)-(6), and inverting the transformation given by (1), we find the 
following continuation and stopping sets appropriate for Sk- I Xi (using a9 = .24). We 
express these continuation and stopping sets as continuous intervals in order to agree with 
the formulas, though the possible outcomes are of course discrete. 

k 5?;" Ak Sk 

1 (-oo, -.01] (-.01, 7.21) [7.21, oo) 
2 (-co,4.80] (4.80, 9.61) [9.61, co) 
3 (-co,9.61] (9.61, 12.01) [12.01, oo) 
4 (-co, 14.41) 0 [14.41, oo) 

In using such a test, we note that it will not have the exact nominal size of ae = .05. The 
reasons for this include the fact that the normal approximation was used (with n = 8 
relatively small), that the outcome space is actually discrete, and that error was introduced 
in determination of the sample size due to the necessity of having integer group sizes. We 
find that the exact Type I and Type II statistical error probabilities are .0354 and .0501, 
respectively, using this test. This is relatively good agreement with the nominal value of .05 
for each of these errors, given the discrete nature of the data. 

Figure 1 a displays the boundaries (expressed as a sample mean) for symmetric one-sided 
group sequential O'Brien-Fleming (p = 0) and Pocock (p = .5) designs for m = 5 and 
a = .05. These figures are drawn as a function of sample size in order to demonstrate the 
effect of test design parameter on sample size requirements. In this figure, the boundaries 
for each design have been connected in order to allow better visualization of the designs. It 
should be noted, however, that the boundaries are actually discrete points. 

The symmetric designs described above are symmetric in the sense that designing a test 
with the null and alternative hypotheses interchanged would result in identical boundaries. 
The goal of perfect discrimination by appropriately sized confidence intervals is more 
difficult to quantify in that there is not yet widespread agreement on a method of 
constructing confidence intervals following a group sequential test. 

3. Efficiency of Symmetric One-Sided Hypothesis Tests 

DeMets (1984) discusses some of the nonquantifiable factors that need to be considered in 
performing a sequential clinical trial. The presence of such complicating factors as secondary 
outcome variables, inconsistency with concurrent studies, additional interest in particular 
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a. Symmetric One-Sided Boundaries 
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Figure 1. Comparison of level x = .05 group sequential test designs for a maximum of m = 5 
interim analyses. For each type of design displayed, 0 = O'Brien-Fleming boundary relationships 

(p = 0), and P = Pocock boundary relationships (p = .5). 
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subsets, or desire for long-term follow-up may well affect the decision to terminate a study 
early. Proponents of the various "conservative early" designs, e.g., the O'Brien-Fleming 
(1979) design, contend that the choice of sequential design should also account for some 
of these other factors. A design that suggests early termination only in the presence of 
extreme evidence for one treatment over another will allow greatest flexibility to examine 
other response variables or long-term effects while maintaining adequate treatment of the 
ethical concerns in clinical trials. 

However, in settings in which these other factors are expected to be of less concern, it 
seems reasonable to choose from a number of sequential designs according to the sample 
size required to perform the hypothesis test. Since the sample size is a random variable for 
a sequential test, we might choose to base our choice on any of several measures of 
efficiency such as the maximum sample size that might be required, the average sample 
number (ASN), or the variance of the sample size. For this paper, we shall follow the 
practice of previous researchers by considering the average sample number, which can be 
found by numerically integrating the sampling density. Unfortunately, we lack a uniformly 
most powerful test in the sequential setting, so comparisons must be based on some specific 
value for the unknown mean. Reasonable values to consider for such "optimization" would 
include 6 = 0 and 6 = 6 3/2. Note that the symmetry of our test design will provide identical 
results for 6 = 6( as for 6 = 0. The case 6 = 63/2 represents the worst case for any particular 
design. 

Table 2 
Expected sample size (ASN) f'or one-sided symmetric sequential design 

Null distribution (A = 0) Intermediate distribution (u = 6,/2)( 

Optimal p=0 p=.5 Optimal p=0 p=.5 

m P c',',),, ASN ASN ASN p cr1,') ASN ASN ASN 
a = .05 

1 1.645 10.82 1.645 10.82 
2 .325 1.975 7.86 8.29 8.01 .359 1.944 9.41 9.80 9.48 
3 .407 2.058 7.07 7.81 7.12 .357 2.132 8.92 9.31 9.02 
4 .442 2.105 6.67 7.46 6.70 .346 2.292 8.66 9.03 8.79 
5 .461 2.138 6.43 7.25 6.44 .338 2.428 8.50 8.85 8.67 
6 .471 2.167 6.27 7.11 6.28 .333 2.543 8.38 8.74 8.59 
7 .478 2.190 6.16 7.02 6.16 .328 2.649 8.30 8.66 8.55 
8 .481 2.215 6.08 6.95 6.08 .326 2.736 8.24 8.60 8.52 
9 .482 2.240 6.01 6.90 6.01 .324 2.817 8.19 8.55 8.50 

10 .481 2.266 5.96 6.85 5.96 .323 2.887 8.14 8.51 8.49 

a = .01 
1 2.326 21.65 2.326 21.65 
2 .398 2.616 14.25 16.31 14.41 .430 2.580 19.34 20.67 19.39 
3 .479 2.644 12.51 15.26 12.52 .391 2.807 18.45 19.48 18.64 
4 .508 2.662 11.69 14.29 11.69 .371 2.998 17.94 18.90 18.27 
5 .522 2.677 11.21 13.84 11.22 .361 3.153 17.62 18.55 18.07 
6 .528 2.694 10.89 13.56 10.91 .356 3.279 17.39 18.31 17.95 
7 .529 2.715 10.67 13.35 10.69 .353 3.387 17.23 18.14 17.87 
8 .528 2.737 10.51 13.20 10.53 .351 3.482 17.10 18.01 17.83 
9 .526 2.759 10.39 13.08 10.40 .350 3.563 17.00 17.91 17.80 

10 .518 2.799 10.29 12.99 10.31 .350 3.632 16.92 17.83 17.78 
a Values given for ASN are for the standardized case. To obtain the sample size for the general case, multiply 

these values by [al/(Cu - to)]2. 

b 61 is the value for the alternative hypothesis which results in a symmetric test. The intermediate hypothesis is 
the value for which the power of the test is 50% and is the value for the mean which results in the largest ASN. 
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For each value of in, a, and 6, we can find one design out of some family of sequential 
designs which minimizes the ASN. Pocock (1982) conducted a systematic search over the 
set of all two-sided group sequential designs having no chance for early termination with a 
decision in favor of the null hypothesis [this included the Pocock (1977) and O'Brien- 
Fleming (1979) designs]. Wang and Tsiatis (1987) explored a one-parameter subset of these 
designs using the boundary relationships described in Section 2, and found that this subset 
achieved nearly full efficiency with respect to the grid search. Jennison (1987) considered 
the set of all one-sided symmetric designs satisfying (4) and (5), but shifted to be symmetric 
about zero, and found a four-parameter subset of these designs that achieved nearly full 
efficiency with respect to the larger search. We shall consider the one-parameter family of 
one-sided symmetric designs described in Section 2. 

For given values of m, a, and 6, ASN was found to be a U-shaped function of p for 
0 < p < 1. Starting with p = 0 and an interval of .1, we performed a grid search until an 
increase in ASN was found. The interval was then decreased and the search reversed until 
an increase in ASN was again found. This process was repeated until the minimum ASN 
was found for a grid interval of .001. Table 2 presents the "optimal" designs within the 
one-parameter family of one-sided symmetric designs for 6 = 0 (or 61) and 6 = 61/2. The 
ASN computed for each case is based on a value of (ul - uo)/a = 1. In order to convert 
the tabulated results to those appropriate for a specific case, multiply them by the quantity 
[af/(-UI _,Uo)]2. For comparison purposes, the ASN of the symmetric designs using the 
O'Brien-Fleming (p = 0) and Pocock (p = .5) boundary relationships have been included 
in Table 2 as well. 

To judge the loss of efficiency from restricting our search to this family of designs, we 
can compare our results to those of Jennison (1987). Under the null (or alternative) 
hypothesis, we find that the one-parameter family of designs is approximately 99% efficient 
relative to the larger family of all symmetric designs. Under the intermediate hypothesis 
that 6 = 61/2, the relative efficiency is about 99.5%. From this we conclude that there is a 
minimal loss of efficiency when we restrict ourselves to the one-parameter family of designs. 

4. Extension to Two-Sided Hypothesis Tests 

The extension of symmetry to the case of two-sided hypothesis tests is not as straight- 
forward. Suppose we are testing two existing treatments, say A and B. In the classical two- 
sided hypothesis test, we want to decide whether A and B are equally effective, or whether 
one treatment is more efective than the other. In practice, however, we want to choose 
from among three possibilities: 

HA: A is better than B 

HO: A and B are equally effective 

HB: B is better than A 

Spiegelhalter and Freedman (1986) note that there is often a range of values judged to 
be clinically equivalent. There might be some hypothesized values, ,tA < ,UB, that repre- 
sent the treatment effects which are clinically important to distinguish. In terms of a 
normally distributed response variable, we can design a test that discriminates between 
HA: A < JU and HB: A > 1UB, with results midway between these hypotheses interpreted as 
rough equivalence between the treatments. For the purposes of test design, we define the 
null hypothesis of such a test as the midpoint of the "equivalence region." Thus, our 
approach is to design a test that has a specified size under the null hypothesis and a desired 
power under either of the alternatives. We shall choose these operating characteristics in 
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such a way as to mimic the "symmetry" present in the fixed sample setting. Without loss 
of generality, we shall consider a simple shift of these hypotheses, defining 

HA: A t-HI HO: = ? HB: A 3 AI 

where Al > 0 corresponds to the minimal amount of difference in treatment effect that is 
clinically important. 

To extend our group sequential notation to accommodate the three possible decisions, 
we partition the outcome space for the partial sum Sk into a continuation set Fk and 
stopping sets 5a(A), 5a(?), and 5a(B), corresponding to the decision to continue the sequential 
test or to stop and decide in favor of HA, HO, or HB, respectively. 

For the one-sided test, we defined our test symmetric if the Type I and Type II statistical 
error probabilities were equal or, equivalently, if the appropriately sized confidence intervals 
would perfectly discriminate between the hypotheses. In deciding among the above three 
hypotheses, however, the characterization of the statistical errors is more complicated and 
the natural ordering of the hypotheses makes total symmetry among these errors undesir- 
able. We therefore extend the concept of symmetry among the hypotheses only to the 
criterion of ability to discriminate perfectly the hypothesized values with appropriate 
confidence intervals. 

For the case of a fixed sample design, the uniformly most powerful unbiased level a two- 
sided test of HO has 

50(A) = (_.oo _Z(a/2)], 

-(?) = (_Z(a/2) Z(a/2)), 

50(B) = [Z(a/2), 0) 

If = 2z(a/2) we obtain a symmetric test in the sense that the usual 100(1 - a)% two-sided 
confidence interval has probability zero of containing both 0 and Jul (or -Al). When 
A = Al (respectively -Al), the probability of deciding in favor of HB (HA) is 1 - a/2. 
When A = 0, the probability of deciding in favor of HO is 1 - a. 

In constructing symmetric two-sided sequential tests, we therefore consider tests having 
continuation and stopping sets of the form 

'= (-Uk, lk] U [ik, Uk), 

=k (= , -Uk], 

-) ( 1k, ik), 

k= [ Uk, co). 

We determine values for 1k and Uk in a manner similar to that for ask and bk in the one- 
sided symmetric designs, with the added restriction that ik , 0. For the one-parameter 
family of boundary relationships, we define 

Uk= Vd(c and ik = max(O, ky1- U,), (7) 

where dX?(,a is the critical value that results in a level a two-sided test of HO and the 
standardized alternative, y 1, is defined by 

Y 2u, (8) m 

To determine sample sizes, we now must use the relation 

T 
() (9) 
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Table 3 presents the critical values d&2) for various m, p, and a. As with the one-sided 
critical values, these were found using a PASCAL program available from the authors on 
request. Figure 1 c depicts the boundaries for symmetric two-sided designs with O'Brien- 
Fleming (p = 0) and Pocock (p = .5) boundary relationships. For comparison, Figure lb 
displays the two-sided O'Brien-Fleming (1979) and Pocock (1977) designs as originally 
proposed. 

As mentioned above, extending symmetric treatment of hypotheses to two-sided tests is 
only approximate, even in the fixed sample case. While the designs presented here are 
symmetric in their treatment of HA and HB, the null hypothesis HO is treated differently. 
This is reflected most notably in the larger values for the expected sample size (ASN) when 
A = 0 as compared with At = ay (or -yI). Table 4 presents ASN(0) and ASN('y) for two- 
sided designs corresponding to O'Brien-Fleming (p = 0) and Pocock (p = .5) boundary 
relationships. Also presented are the expected sample sizes for the original O'Brien-Fleming 
(1979) and Pocock (1977) designs for a comparable alternative. It can be seen that under 
the null hypothesis, there is a marked increase in efficiency in the designs proposed here 
due to the potential for early stopping with a decision in favor of HO. It is interesting to 
note that for the original Pocock and O'Brien-Fleming designs under the null hypothesis, 
the ASN increases as the maximum number of analyses, m, is increased. For the symmetric 
two-sided design, the overall trend is that the ASN decreases as m increases, though this 
relation is not monotonic due to the discrete nature of the boundary for stopping with 
acceptance of the null hypothesis. To see this we note that for a = .05 and p = 0, the 
earliest analysis at which a study can be stopped with acceptance of the null is 2, 2, 3, 3, 4 
for m = 2, 3, 4, 5, 6, respectively. In general, this earliest possible stopping time with 
acceptance of the null, measured by number of analyses, is nondecreasing with m. Measured 
as a proportion of the maximal sample size, however, these earliest possible stopping times 
correspond to 1.0, .67, .75, .60, .67. This lack of monotonicity is caused by the limitation 
placed on possible stopping times when m is relatively small. Under the alternative 
hypothesis, the original designs and the symmetric two-sided designs both show the ASN 

Table 3 
Critical values (d,'),) for two-sided symmetric sequential design 

Design parameter (p) 

m 0 .1 .2 .3 .4 .5 
a = .05 

2 2.796 2.623 2.473 2.344 2.236 2.149 
3 3.447 3.117 2.834 2.600 2.408 2.254 
4 4.011 3.525 3.119 2.787 2.527 2.330 
5 4.503 3.879 3.363 2.943 2.618 2.379 
6 4.956 4.192 3.571 3.076 2.695 2.418 
7 5.368 4.478 3.759 3.189 2.760 2.450 
8 5.757 4.738 3.927 3.293 2.815 2.479 
9 6.119 4.982 4.082 3.384 2.865 2.501 

10 6.465 5.208 4.226 3.468 2.909 2.520 

a = .01 
2 3.648 3.411 3.200 3.019 2.871 2.756 
3 4.486 4.037 3.647 3.317 3.052 2.854 
4 5.200 4.553 4.002 3.543 3.182 2.921 
5 5.831 4.998 4.302 3.730 3.284 2.967 
6 6.405 5.393 4.562 3.889 3.369 3.003 
7 6.933 5.752 4.794 4.028 3.442 3.032 
8 7.426 6.082 5.004 4.152 3.504 3.058 
9 7.889 6.388 5.196 4.264 3.560 3.079 

10 8.328 6.674 5.375 4.366 3.610 3.097 
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Table 4 
Expected sample size (ASN)'fJor two-sided sequential designs 
Null distribution (tt = 0) Alternative distribution (tt = yl) 

Symmetric 
O'Brien- Doublec 

Symmetric 
O'Brien- Doublec 

m p = 0 p = .5 Fleming Pocock triangle p = 0 p = .5 Fleming Pocock triangle 

a = .05 
1 15.37 15.37 15.37 15.37 14.95 15.37 15.37 15.37 15.37 14.95 
2 15.60 12.39 15.42 16.46 12.31 11.73 10.81 11.65 10.34 10.44 
3 12.68 12.26 15.51 17.04 13.01 10.96 9.53 10.93 9.12 9.57 
4 12.95 12.66 15.58 17.41 11.72 10.41 9.05 10.35 8.59 9.20 
5 12.12 11.98 15.62 17.68 11.45 10.06 8.68 10.03 8.30 8.96 
6 12.26 1.1.74 15.66 17.89 11.65 9.88 8.44 9.84 8.12 8.81 
7 11.86 11.74. 15.69 18.06 11.24 9.73 8.29 9.70 8.00 8.66 
8 11.95 11.94 15.71 18.20 11.13 9.63 8.21 9.60 7.91 8.55 
9 11.71 11.72 15.73 18.33 11.25 9.54 8.10 9.52 7.84 8.48 

10 11.78 11.63 15.75 18.43 11.04 9.49 8.03 9.46 7.79 8.40 

a = .01 

1 21.64 21.64 21.64 21.64 25.15 21.64 21.64 21.64 21.64 25.15 
2 26.61 18.96 26.57 28.22 18.88 19.96 17.08 19.94 16.43 16.47 
3 20.47 18.61 26.67 29.06 20.55 18.57 14.74 18.53 14.21 15.20 
4 21.16 19.11 26.76 29.60 17.96 17.31 13.79 17.26 13.29 14.71 
5 19.45 17.77 26.82 29.99 17.47 16.77 13.21 16.72 12.77 14.27 
6 19.75 17.30 26.88 30.29 17.86 16.41 12.83 16.36 12.43 13.93 
7 18.97 17.24 26.94 30.54 17.09 16.14 12.57 16.09 12.20 13.66 
8 19.15 17.49 26.99 30.75 16.91 15.95 12.39 15.90 12.03 13.47 
9 18.70 17.09 27.03 30.93 17.01 15.80 12.23 15.76 11.91 13.33 

10 18.82 16.91 27.07 31.08 16.73 15.69 12.11 15.64 11.81 13.22 

a Values given for ASN are for the standardized case. To obtain the sample size for the general case, multiply these values by 

b -y is the value for the alternative hypothesis which results in a symmetric test. For comparison purposes, the sample sizes for 
the original O'Brien-Fleming and Pocock designs were computed based on the alternative for which the test would have 
power I - a/2. It should be noted that the power of the two-sided symmetric tests under the alternative is slightly higher 
than 1 - a/2, which tends to inflate the ASN, and the power of the double triangular test can be either slightly higher or lower. 

c The double triangular test of Whitehead and Stratton (1983) is only approximately size a. For smaller values of ni, the true 
size of the test may be as much as 10% higher than a. 

decreasing with increasing m. From Table 4 it can be seen that the two-sided symmetric 
tests are nearly as efficient as the original designs under the alternative. 

We should note that the marked improvement in efficiency of the symmetric tests 
proposed here under the null hypothesis compared with that of the original designs is not 
at all surprising. The original tests could be stopped with a decision in favor of the null 
only when the maximum sample size had been accrued. Thus, any tests that allow early 
stopping with acceptance of the null hypothesis will show improved efficiency with respect 
to those original designs when the null hypothesis is true. Whitehead and Stratton (1983) 
described an approximate test for this setting, the double triangular test, which showed 
similar improvements in efficiency. Table 4 contains the ASN for such a test under the 
null and alternative hypotheses. It should be noted that this test, which is a superposition 
of two approximate one-sided tests, is not exact and can have sizes 10% greater than the 
nominal size for lower values of m. 

A further departure from the fixed sample case results from the sequential testing. In the 
sequential design, the probability of deciding HB when At = TyI is only approximately 
1 - a/2. In general, the true power under the alternative is slightly higher than the 
designed power. The power under the alternative hypothesis for a level .05 two-sided 
symmetric test is typically .976 when p = 0 and .98 when p = .5. This slight increase in 
power can explain at least part of the slight reduction in efficiency noted above for the two- 
sided symmetric designs compared to the original Pocock (1977) and O'Brien-Fleming 
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(1979) designs under the alternative hypothesis. We note that power of the double triangular 
test under the alternatives is also different from the designed power, though it can be either 
slightly higher or lower, with approximately the same magnitude of error as the two-sided 
symmetric designs. 

A key feature of the two-sided symmetric tests is the ability to terminate the study early 
with a decision in favor of the null hypothesis. Since that null hypothesis represents 
equivalence between the treatments, however, ethical considerations, at least on an individ- 
ual level, are not as demanding. Thus, there are many conceivable situations in which such 
a design is not desirable. It the two treatments are approximately equal in efficacy, a 
researcher may want to continue a trial in order to assess secondary issues. 

There are also many situations that call for early termination with a decision of 
equivalence. As a matter of efficiency (minimizing cost or time) or collective ethics (releasing 
patients to participate in future studies), it is often desirable to terminate a study as soon 
as one can be confident of the eventual outcome. Indeed, there is a large literature on early 
termination of negative studies using the futility index, which is defined as the conditional 
probability, usually under the alternative, of eventually rejecting the null hypothesis given 
the observations already collected (Ware, Muller, and Braunwald, 1985). Obviously, the 
symmetric two-sided tests presented here could be interpreted in this fashion, though it is 
unlikely that a simple function of the futility index describes the stopping boundary. 
Instead, we have tried to define the stopping boundary under the null to have many of the 
same characteristics of the stopping boundary for the alternatives. In essence, the symmetric 
tests terminate under the null when the alternatives have been sufficiently ruled out, using 
the same criteria that are used to decide in favor of the alternative after the null has been 
ruled out. For convenience we parameterize these boundaries according to degree of 
conservatism at the earlier analyses, rather than an explicitly calculated probability. 

An alternative method for constructing two-sided group sequential tests consists of 
superimposing two shifted one-sided symmetric tests in a manner similar to the superpo- 
sition of triangular tests by Whitehead and Stratton (1983). Such a method allows greater 
flexibility in design, since level a one-sided tests can be shifted and superimposed to provide 
an exact level a * two-sided test of Ho. However, the choice of a * = 2a results in a test only 
marginally different from those derived above. Furthermore, the added flexibility of these 
designs is balanced by the need to provide both a critical value for the one-sided tests and 
a shift parameter for the superposition. Results for these tests have not been presented here, 
though computer programs to calculate these parameters are available from the authors 
upon request. 

5. Unequal Group Sizes and Varying Numbers of Analyses 

The results of the preceding sections have been based on the premise that equal-sized 
groups would be accrued between successive analyses, i.e., testing occurs at intervals of 
equal information. In practice, this is often not feasible. When subject accrual rates vary 
over time, or when treatment outcome is measured after some delay, the rate of data 
accrual is often nonuniform in calendar time. Data monitoring committees, however, often 
meet on a regular basis and analyses are performed for discussion at these meetings. Such 
a setting can lead to four distinct departures from the assumptions of the earlier sections: 
(1) the group sizes are unequal, (2) the groups' relative sizes are unknown at the time of 
test design, (3) the number of analyses performed may be random, and (4) the sample size 
accrued by the final analysis may differ from that designed. In this section we discuss, in 
turn, the impact of these four departures on the use of the proposed symmetric tests. We 
shall limit this discussion to the case of one-sided tests, though it is not unreasonable to 
assume that the two-sided tests will behave in a similar fashion. 
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Generalization of these designs to the case of unequal group sizes is straightforward, 
though not easily tabulated. We now return to the fuller model of Section 1 where group 
sizes vary. We assume m is fixed in advance. If we perform the transformation (1) on this 
data for n = E I ni/m, we have that X* - N((n1/n )b 1, nI/n) under the alternative hypothesis. 
We shall again define our test design for this transformed problem by basing the contin- 
uation and stopping sets on the partial sums Sk, for k = 1, . .., m. 

Since we are concerned with experimental design, we cannot assume that the ni's are 
known prior to fixing the maximum sample size, which is chosen to yield a test having 
certain desired operating characteristics. Instead, we assume that the time of analyses will 
be fixed according to the proportion of the maximum sample size accrued. That is, we 
assume that the kth analysis will occur when a proportion, 7rk, of the maximum sample 
size, mn, has accrued. The proportions Irk (k = 1, ..., m) are fixed in advance, with 
7rM = 1. The maximum sample size is to be determined by the design, and the group sizes 
are then computed according to 

ni = 7rimn, 

nk = (irk - rkIl)mn, for k = 2, ..., m. 

Now, for the case of equal group sizes we have that rk = kim, and equation (6) is equivalent 
to bk = (mirk)PC(a). Using this formula to generalize the one-parameter family of one-sided 
symmetric tests, we have for proportions ir = (7X, ..., ) 

ak = m70k1 -bk, 

bk = (mirk)Pcf , 

with '1 defined by (5) and n defined by (2) as before. For specific values of ir, a, and p, the 
critical values c(a) can be found by numerically integrating the sequential density appropri- 
ate for the distribution of the Sk's given above in a bounded search. 

Clearly, this extension of the symmetric bounds resists tabulation. In practice, the 
proportion vector may be any of an infinite number of possibilities. Determination of the 
appropriate boundaries will need to be done on a case-by-case basis using a computer 
program to integrate the appropriate sequential density. 

To explore the effect of testing with unequal group sizes, we consider a family of 
proportion vectors specified by 

lks 
irk = V-J 

It should be noted that when r < 1, the earlier group sizes are larger than later ones; 
conversely, when r > 1, earlier group sizes are smaller. This latter case corresponds most 
closely to the one that arises when testing is done at regular time intervals in a study with 
relatively uniform accrual of subjects, but an outcome measured by survival. In such a 
situation, the information accrued is most closely related to the number of deaths observed. 
Obviously, the delayed response will tend to mean less information at earlier analyses and 
relatively rapid accrual of information toward the end of the study. Note that r = 1 
corresponds to testing with equal group sizes. For example, when m = 4, the proportion 
vectors are (.33, .57, .79, 1.0), (.25, .50, .75, 1.0), and (.12, .35, .65, 1.0) when r = .8, 1.0, 
and 1.5, respectively. 

In Table 5 we present critical values c(a) and average sample number (ASN) under the 
null hypothesis for selected values of a, p, and r when m = 4. From this it can be seen that 
the different values of r correspond to critical values that differ only slightly from the value 
for r = 1, the equal-information case. This then suggests that a reasonable approximation 



Symmetric Group Sequential Test Designs 919 

Table 5 
Critical values (c"), maximum sample size (mn), and average sample number under the null 

hypothesis [ASN(0)] of group sequential tests with proportion vectors ir = ((1/rm)', (2/m), 1) 
(one-sided symmetric designs, m = 4) 

Design parameter 

p=0 p=.5 

r G. mn ASN(0) c',) mn ASN(0) 

a = .10 
.8 2.731 7.460 4.610 1.605 10.307 4.559 

1.0 2.717 7.384 4.645 1.646 10.836 4.399 
1.5 2.687 7.222 4.751 1.719 11.820 4.414 

a = .05 
.8 3.419 11.692 7.398 1.977 15.638 6.944 

1.0 3.404 11.588 7.465 2.013 16.202 6.695 
1.5 3.374 11.386 7.678 2.074 17.209 6.761 

a = .025 
.8 4.022 16.173 10.294 2.292 21.020 9.244 

1.0 4.006 16.052 10.374 2.323 21.577 8.901 
1.5 3.977 15.820 10.740 2.374 22.546 9.016 

a = .01 
.8 4.729 22.359 14.224 2.652 28.132 12.144 

1.0 4.714 22.220 14.292 2.678 28.684 11.693 
1.5 4.689 21.986 14.938 2.720 29.596 11.889 

to exact boundaries might be made by using 

ak = mi,.bl - bk, (10) 

bk = (Mvrk)C17,P, 

where c(a) is the critical value appropriate for equal information as given in Table 1. Actual 
size and ASN are presented in Table 6 for tests defined by (10) as a function of proportion 
vector parameter r. From this table it can be seen that the exact size is near nominal for 
these departures from the equal-information theory. Furthermore, the O'Brien-Fleming 
boundary relationships (p = 0) behave much better in this regard than do the Pocock 
boundary relationships (p = .5). 

This then provides a strategy for dealing with the problem of testing according to 
calendar time when the relative sizes of the groups are not known in advance. A test can 
be designed using the critical value appropriate for equal-information testing. When the 
actual analyses are performed, (10) can be used to determine the continuation and stopping 
sets for an approximate level a test. 

The results presented in Table 6 assume that only the planned number of analyses were 
performed, and furthermore that the mth analysis was performed when the planned 
maximal sample size had been accrued. In the setting of testing at equal intervals of calendar 
time, both of these assumptions may be violated. By the time of the mth planned analysis, 
the total sample size may be more or less than planned. Thus, a researcher may want to 
plan additional analyses when more data have accrued, or he may decide to complete the 
study with the existing sample. 

Suppose a study is planned to have m analyses, but a decision is made to perform mn' 
analyses. For the moment we shall assume that the planned maximal sample size will be 
accrued by the m 'th analysis. In such a setting, the approximation represented by (10) can 
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Table 6 
Size and average sample number under the null hypothesis [ASN(0)] of group sequential tests with 

proportion vectors ir = ((1 /m)', (2/m)', . . ., 1) when equal-information critical values are used 
(one-sided symmetric designs, m = 4) 

Design parameter 

p=0 p=.5 

r Size ASN(0) Size ASN(0) 
a = .10 

.8 .1013 4.560 .0933 4.800 

.9 .1006 4.599 .0967 4.573 
1.0 .1000 4.645 .1000 4.399 
1.2 .0988 4.733 .1059 4.164 
1.5 .0972 4.867 .1135 3.982 

a = .05 
.8 .0508 7.330 .0465 7.189 
.9 .0504 7.401 .0483 6.901 

1.0 .0500 7.465 .0500 6.695 
1.2 .0493 7.585 .0530 6.453 
1.5 .0484 7.819 .0569 6.326 

a = .01 
.8 .0102 14.135 .0093 12.362 
.9 .0101 14.219 .0097 11.946 

1.0 .0100 14.292 .0100 11.693 
1.2 .0098 14.549 .0106 11.485 
1.5 .0097 15.095 .0113 11.522 

be applied to find stopping boundaries. We would expect the resulting test to be anticon- 
servative if m' > m, and conservative otherwise. Performing more analyses than appropriate 
for the test design will inflate the Type I error rate. 

Similarly, we can predict the general effect of varying the maximal sample size accrued 
from that which was planned. If one wishes definitely to terminate a study with the 
"incorrect" final sample size at the mth analysis, the approximation in (10) cannot be used 
directly. If the final sample size were less than planned, the final continuation set would 
not be empty. If a larger sized sample were accrued, the stopping sets would not be disjoint. 
Selecting b,1, as defined in (10) as the final stopping boundary will tend to maintain the size 
of the test very close to the nominal level, but will cause the power under the alternative 
to vary. One solution to this problem that preserves the symmetry of the hypotheses is to 
use (10) to calculate aM7 and b,,, and then use (a,), + b,,7)/2 as the final stopping boundary. 
This approach will lead to anticonservative tests if a smaller sample is used, and conservative 
tests if the final sample is larger than appropriate for the value of c(7'lP. 

As mentioned above, it may sometimes arise that several of these four problems will be 
present simultaneously. We would expect, as is the case, that these violated assumptions 
would have additive effects on the true size of the resulting test. In Table 7 we present the 
results of numerically computing the size of approximate tests in various settings. In all 
cases, we assume a test is designed using the equal-information-based critical value as given 
in Table 1. For the cases of m = 4, a = .05, and p = 0 or .5, we examine the effects of 
varying the rate of data accrual (as measured by the parameter r), varying the number of 
analyses actually to be performed, mi', and varying the sample size accrued by the m 'th 
analysis, ,77 (measured as a proportion of the planned maximal sample size). From this 
table it can be seen that the symmetric test with O'Brien-Fleming-type boundary relation- 
ships (p = 0) is generally more robust to these departures than the test with the Pocock- 
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Table 7 
Attained size for approximate one-sided symmetric sequential design as a function of accrual rate (r), 

maximal sample size (w,,,) and actual number of analyses (m') (m = 4, cx = .05) 

Actual number of analyses (mi') 

r 71 2 3 4 5 6 

p = 0 (O'Brien-Fleming (1979) boundary relationships) 
.8 .9 .0546 .0556 .0563 .0569 .0573 

1.0 .0472 .0492 .0508 .0520 .0530 
1.1 .0421 .0457 .0484 .0504 .0518 

1.0 .9 .0542 .0552 .0559 .0565 .0570 
1.0 .0464 .0484 .0500 .0512 .0522 
1.1 .0407 .0442 .0470 .0491 .0507 

1.5 .9 .0535 .0545 .0552 .0558 .0562 
1.0 .0450 .0469 .0484 .0496 .0506 
1.1 .0383 .0415 .0441 .0462 .0480 

p = .5 (Pocock (1977) boundary relationships) 
.8 .9 .0375 .0445 .0502 .0550 .0590 

1.0 .0328 .0405 .0465 .0514 .0555 
1.1 .0294 .0376 .0437 .0487 .0528 

1.0 .9 .0389 .0471 .0537 .0593 .0640 
1.0 .0341 .0430 .0500 .0557 .0606 
1.1 .0307 .0401 .0473 .0531 .0580 

1.5 .9 .0416 .0520 .0607 .0680 .0743 
1.0 .0366 .0478 .0569 .0644 .0709 
1.1 .0330 .0447 .0541 .0618 .0683 

type boundary relationships (p = .5). In the case of the former, varying the number of 
analyses by ?2, varying the maximal sample size by ? 10%, or varying the accrual pattern 
within the range explored had generally small effects on the attained size of the test. Since 
the symmetry between the hypotheses has been maintained in the approximate tests, the 
effect on the power of the tests under the alternative is equally robust. Similar results were 
observed for other choices of m and a. 

If the number and timing of the analyses are random, the results given in Tables 6 
and 7 are interpretable as the size of the test conditional on the test actually performed. 
Thus, if the random nature of the number and timing of analyses is considered a part of 
the design, the actual operating characteristics of a study will be a weighted average of 
measurements such as those presented in Table 7. 

It should be noted that more exact methods have been proposed for dealing with at least 
some of the listed departures from equal-information testing. Lan and DeMets (1983) and 
Fleming, Harrington, and O'Brien (1984) have proposed flexible rules for maintaining the 
exact size of a test when group sizes and numbers of analyses are random. Both of these 
methods define stopping boundaries based solely on the null hypothesis, and thus are not 
symmetric in their treatment of the hypotheses. As noted by Jennison (1987), it is in 
general not possible to maintain symmetry between the Type I and Type II statistical error 
probabilities under random group sizes. We have thus focused on developing symmetric 
approximate tests, though the definition of approximately symmetric tests using a Lan and 
DeMets (1983) Type I error spending rate function or using the similar methods proposed 
by Fleming et al. (1984) might be equally appealing. 

Such flexibility does not provide a solution to all the problems inherent in testing 
according to calendar time. The Lan and DeMets procedure is defined for a specific 
maximal sample size. Departures from the planned maximal sample size will necessitate 
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either altering the predetermined Type I error spending rate function or allowing the size 
to vary from the nominal. Also, when planning a study, a researcher will need to estimate 
the number of analyses and the relative group sizes in order to determine the power function 
for the test. In general, the overall robustness of such a Lan and DeMets procedure will be 
commensurate to that of the symmetric tests. However, as with the case of using bn to 
define the final stopping boundary, the Lan and DeMets procedure will hold the size to the 
nominal level and allow the power under the alternative to vary. Planning and performing 
such a test requires the availability of computer programs capable of numerically integrating 
the density for the group sequential test statistic. 

Thus, even if one of the more flexible procedures is to be used when the analyses are 
performed, the symmetric designs herein proposed can be used in designing the study. 
Since each design is dependent on a single, easily tabulated parameter, a researcher can 
determine sample size using only a hand calculator. Lan and DeMets type use functions 
that mimic the behavior of the symmetric test can be found and used in performing the 
test. 

As a final comment, we note that none of the tests discussed in this section maintain 
their operating characteristics when the number and timing of analyses are determined by 
looking at the data. While some of these methods are reasonably robust to certain data- 
driven choices, a researcher must take care that any departures from the planned design 
not be so dependent on the observed results that the size of the test be unduly inflated. 

6. Summary 

In presenting group sequential designs that treat the hypotheses symmetrically, we have 
attempted to address those concerns relating to efficiency and medical ethics in Phase III 
clinical trials. The efficiency and robustness of the family of symmetric one-sided tests are 
comparable to those reported by Jennison (1987), yet the test designs we have proposed 
are completely specified by a single parameter. Since the family of test designs covers a 
wide spectrum of tests in terms of the degree of conservatism at early analyses, there is 
much flexibility in accommodating the questions inherent in any clinical trial that are not 
directly related to the primary outcome. A researcher may choose test designs that have a 
greater probability of continuing to a larger sample size, thereby allowing secondary 
questions to be assessed. Upon choosing the maximal number of analyses, the level of 
significance, and the degree of conservatism desired at earlier analyses, a user can easily 
compute sample sizes and test boundaries for a sequential clinical trial using the critical 
values presented in this paper. Such tests are found to be easily adapted and relatively well 
behaved for departures from the equal-information setting. 

In extending the symmetric design to the case of two-sided hypothesis tests, we have 
maintained the ease of specification of the group sequential design. These symmetric two- 
sided group sequential tests, however, show marked improvement in expected sample size 
under the null hypothesis when compared with the originally proposed Pocock (1977) and 
O'Brien-Fleming (1979) two-sided tests, and are nearly as efficient as the original designs 
under the alternative hypothesis. In this respect, they are comparable to the approximate 
two-sided tests proposed by Whitehead and Stratton (1983). Thus, the proposed test designs 
provide better overall treatment of the efficiency considerations when planning a two-sided 
clinical trial. It is reasonable to expect that the efficiency and robustness of these symmetric 
two-sided tests will be comparable to the one-sided tests. 
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RfSUMf 

Au cours des essais de Phase III, des analyses intermediaires sont souvent ethiquement necessaires, 
afin que le meilleur traitement soit disponible les plus rapidement possible pour tous les patients. Les 
plans d'analyse sequentielle groupie qui ne traitent pas les hypotheses sym&triquement ne peuvent 
repondre completement a cette obligation ethique, puisque l'arret rapide de l'etude peut 6tre plus 
facile sous une des hypotheses. Nous presentons une famille monoparametree d'analyses sequentielles 
groupies symetriques et unilaterales, pratiquement optimales en ce qui concerne la taille moyenne 
de l'echantillon. Les tests symetriques sont ensuite etendus aux hypotheses bilaterales. Ces analyses 
sequentielles groupies bilaterales, planifiees symetriquement, ameliorent l'efficacit& globale, par 
rapport aux tests proposes par Pocock (1977, Biometrika 64, 191-199) et O'Brien et Fleming (i979, 
Biometrics 35, 549-556). Des tables de valeurs seuils sont fournies pour les plans d'experience 
symetriques uni et bilateraux, permettent la determination des tailles d'echantillon et des frontieres 
d'arret, dans le cadre des analyses sequentielles groupies. Des tests approches bases sur ces schemas, 
sont proposes quand le nombre et les dates d'analyses sont aleatoires. 
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