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SUMMARY. Currently, the design of group sequential clinical trials requires choosing among several distinct 
design categories, design scales, and strategies for determining stopping rules. This approach can limit the 
design selection process so that clinical issues are not fully addressed. This paper describes a family of 
designs that unifies previous approaches and allows continuous movement among the previous categories. 
This unified approach facilitates the process of tailoring the design to address important clinical issues. The 
unified family of designs is constructed from a generalization of a four-boundary group sequential design in 
which the shape and location of each boundary can be independently specified. Methods for implementing 
the design using error-spending functions are described. Examples illustrating the use of the design family 
are also presented. 
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rules; Unification. 

1. Introduction 

Clinical trials commonly incorporate interim analyses of ac- 
cruing data for a variety of reasons, including patient safety, 
trial efficiency, and cost reduction. It is important that such 
interim analyses be conducted using statistical procedures 
that preserve the type I error rate. A group sequential design 
is perhaps the most common approach to formally including 
interim analyses in a clinical trial. The statistical literature 
describes a number of group sequential design families, each 
of which addresses a somewhat different setting. This con- 
ceptual organization of group sequential designs into disjoint 
families does not facilitate the process of selecting a suitable 
stopping rule for a particular clinical trial. 

This paper describes a family of group sequential stopping 
rules that unifies many of these previously described designs 
in such a way that there is a continuous spectrum joining what 
were once disjoint families. Incorporation of such a large fam- 
ily of designs into statistical software facilitates the search for 
an appropriate design by allowing a user to consider designs 
intermediate to specific families. These intermediate designs 
often represent new generalizations of stopping rules, and thus 
the unified family also extends the range of clinical settings 
to which group sequential methodology can be applied. 

This work was motivated by the need to design a safety/effi- 
cacy trial for a new procedure for guiding radiation treat- 

ment of tumors growing near the spine (Hamilton and Lulu, 
1995). This procedure, termed stereotactic spinal radiosurgery 

(SSR), is intended for patients with tumors growing too close 
to the spine for safe treatment with standard radiotherapy. 
The SSR procedure entails attaching a stereotactic frame to 
the patient's spine and obtaining a magnetic resonance im- 
age showing the spine and the frame. Radiation therapy is 
then delivered using the coordinate system established by the 
frame. The potential risks of this treatment include radiation 
damage to the spine or surrounding tissues and complications 
from the 13 hours of general anesthetic required by the pro- 
cedure. Because patients in this study are highly selected, a 
randomized control group is most appropriate. There is no 
alternative treatment for these patients, so standard therapy 
consists of the best available management of symptoms that 
might result from tumor progression. It is important to mon- 
itor this trial to provide early detection of any excess toxicity 
in the SSR arm. It is also important that the trial rule out the 
worst possible toxicities (paralysis and death) before assess- 
ing the potential benefits of SSR by other endpoints, such as 
tumor volume reduction and quality of life. This work grew 
out of our attempt to extend group sequential design options 
to address this situation. As described next, the search for a 
suitable clinical trial design progressed from two-sided sym- 
metric group sequential designs (Emerson and Fleming, 1989; 
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Pampallona and Tsiatis, 1994), through two-sided designs al- 
lowing early stopping only under the alternative (O'Brien and 
Fleming, 1979; Wang and Tsiatis, 1987) and various asymmet- 
ric one-sided and equivalence designs (newly described in this 
unified family), and resulted in the selection of a hybrid de- 
sign incorporating aspects of both equivalence and superiority 
test designs. 

1.1 Setting 
Consider a clinical trial in which treatment efficacy is 
measured by independent observations Yi, i = 1,... , Nj, 
with Yi N(p, u,2), and suppose that we are testing the 
null hypothesis Ho: ,u = [to when o2 is known. We assume 
that large and small values of ,u imply the "superiority" and 
"inferiority," respectively, of a new treatment when compared 
to control and that ,u = ,Lo implies "equivalence" between the 
new and control treatments. This setting is sufficiently general 
to address a wide variety of clinically meaningful situations 
(Whitehead, 1992) in which Ni measures the statistical 
information about ,u, which is available at the jth analysis. 

Notationally, let N1 < N2 < ... < Nj be the sample 
sizes at which interim analyses will be performed. We assume 
that the maximum number of analyses J and their timing 
is fixed when designing a study, but we address flexible 
implementations in Section 2.2. At each interim analysis, an 
estimate of the treatment effect is used to decide whether 
another group should be accrued. At the jth interim analysis, 
the magnitude of the treatment effect can be measured by 
the sample mean statistic Yj = ZN_Yi/Nj, the normalized 
statistic Zj = (Nj)1/2(Yj-i_o)/o, or the partial sum statistic 

T _EN_1Y 
Group sequential designs are typically defined on a 

standardized scale: Xi (YiZ- o)/((NJ)112a), with Xi 
f(5/Nj, 1/NJ), where a (Nj)112(ft - [o)/u is the 

standardized treatment effect. In the absence of sequential 
testing, the standardized sample mean Xj = (Nj)1 2(Yj- 

Po)/l has distribution Xj -fi(6, /Hj)I, where HIl - 

Nj /Nj is the proportion of the sample accrued by the 
jth analysis. The standardized partial sum statistic (Sj = 

XjHj) and normalized statistic (Zj = Xj(I- )l/2) have 
distributions Sj f (6Hj, Hj) and Zj A\f(H(rjj)1/2, 1). 
The distribution of the standardized sample mean statistic 
at the jth analysis depends on the sample size Nj only 
through the proportion Hj = Nj/Nj; thus, it is possible to 
calculate and evaluate group sequential designs knowing only 
the proportions Hl,...,Hj = 1. As described in equation 
(1), the maximal sample size Nj will be chosen to map the 
standardized scale back to the original scale of the problem. 

A group sequential design is defined by specifying the 
conditions under which the trial will stop at each of the 
J analyses or, equivalently, the conditions under which the 
trial will continue to accrue the next group of observations. 
These conditions can be expressed as stopping sets Si and 
continuation sets Cj for one of the standardized statistics Sj, 

Xj, or Zj. If continuation sets Cj were specified for the sample 
mean statistic Xj, then a group sequential trial is stopped at 
the Mth analysis, where M = minj{1 < j < J: Xj f Cj}. 
We require that the final continuation set, Cj = 0, be empty, 
so that the clinical trial stops by the Jth analysis. The trial 

objective is to draw inferences about ,u or its standardized 
version, 6. A sufficient statistic for 6 is the stopping time M 
and any one of the three statistics S = SM, X = XM, or 
Z = ZM, and its sampling distribution can be numerically 
integrated using the recursive form of Armitage, McPherson, 
and Rowe (1969). 

In a frequentist approach, we desire group sequential tests 
with a type I error rate of a and power 3 for an alternative 
,u = ,ul. To find such designs, we use the standardized scale 
and an iterative search in which (a) continuation sets are 
guessed, (b) their operating characteristics are evaluated by 
numerical integration of the sampling density, and (c) new 
continuation sets are tried until a design with the desired size 
and statistical power is found. This search produces a value for 
61, the standardized alternative with power ,. The maximal 
sample size is chosen as 

~2 2 
Nj = ( (1) 

which maps 61 to ,u1 and gives a design with power 3 at /tI. 

The above design-specification process will not produce 
a unique design because there are infinitely many sets of 
stopping rules that satisfy the operating characteristics. In 
fact, there is no uniformly most powerful group sequential 
test; hence, research in this area usually imposes further 
structure on the stopping boundaries. We now review some of 
the most commonly used group sequential designs previously 
described in the literature. 

1.2 Previously Described Families of Group Sequential 
Designs 

The earliest group sequential designs for clinical trials were 
two-sided tests in which an upper stopping boundary rejects 
the null hypothesis in favor of an alternative 6 > 61, and 
a lower boundary rejects the null hypothesis in favor of 
6 < -61. Pocock (1977) investigated designs using the 
normalized statistic Zj in which the trial stops at the first 
analysis, where Zj f (-G,G). O'Brien and Fleming (1979) 
investigated the use of nonconstant stopping boundaries of 
the form Zj X (-G/(JIj)1"2,G/(JIj)1"2). Wang and Tsiatis 
(1987) investigated designs that stop the study when the 
partial sum statistic Sj f (-GH`Z', GH`Z'). The user-specified 
parameter i\ unifies and extends the Pocock and O'Brien and 
Fleming (OBF) approaches as it ranges from 0.5 to 0. In all of 
these approaches, the value of G is found by computer search 
to provide a level-oa test of the null hypothesis. 

The early designs have since been extended to address a 
wider range of clinical settings, including designs for one- 
sided hypothesis tests and designs that allow stopping under 
both the null and alternative hypotheses. The triangular 
design (Whitehead and Stratton, 1983) stops the first time 
Sj f (611Hj - G - GIIj,G + GHj), where G is found to 
provide a level-a one-sided test with power 1 - a to detect 
the standardized alternative 6 = 61. The lower boundary 
rejects the hypothesis 6 > 61 rather than 6 = 0. The 
double triangular test has four boundaries (formed from 
the superposition of two triangular tests) and allows early 
stopping for either the null or alternative hypothesis in the 
context of a two-sided hypothesis test. Emerson and Fleming 
(1989) extended the family of Wang and Tsiatis to consider 
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one- and two-sided hypothesis tests with early stopping for 
either the null or alternative hypothesis. For example, a one- 
sided symmetric design stops when Sj f (5i JlI - GF4, GFJ ), 
where, as in the triangular test, G is chosen to provide size 
ae, and 61 is the standardized alternative with power 1 - a. 
Pampallona and Tsiatis (1994) extended these designs to ac- 
commodate asymmetric power requirements. Single-boundary 
designs for testing a one-sided hypothesis with early stopping 
only under the null or alternative hypothesis, but not both, 
have been implemented in PEST (1993) as straightforward 
extensions of the triangular test and in EaSt (1995) as exten- 
sions of the Wang and Tsiatis boundaries. 

(a): Two-sided Hypothesis; 
Early Stopping: Alternative 

o _ i Decide for 

Superiority 

Decide for 

EL *Equivalence 

I I 

Decide for 
o _ g | | : | Inferiority 

0.2 0.4 0.6 0.8 1.0 

Proportion of Fixed-Sample Study 

(c): One-sided Hypothesis; 
Early Stopping: Null 

o _ Decide for 

Superiority 

EI 

Ir _ Y : ; ; Decide for 

l l l i | Non-Superior 

? - I I 0I I I 

0.2 0.4 0.6 0.8 1.0 

The preceding families of group sequential boundaries can 
be grouped into four discrete categories based on the pos- 
sible combinations of one- versus two-sided hypothesis tests 
and whether early stopping occurs under the null hypothe- 
sis, the alternative hypothesis, or both. Figure 1 illustrates 
the four categories using stopping sets for the sample mean 
statistic Xj. The sample mean scale is preferred here and in 
subsequent sections because it is shape invariant to hypothesis 
shifts. The next section presents a unified family of group se- 
quential designs that includes the previously mentioned fami- 
lies and allows a continuum between the four basic categories 
depicted in Figure 1. 

(b): Two-sided Hypothesis; 
Early Stopping: Null, Alternative 

o _ l l _ Decide for 

j j j Superiority 

X o _ )y . Decide for 
E x . ? Equivalence 

IV~~~~~~~~~~~~~~~I cn~~~I 

ur _ )r~~~~~~~~ I I I 
Decide for 

o _ ) | | : I Inferiority 

0.2 0.4 0.6 0.8 1.0 

Proportion of Fixed-Sample Study 

(d): One-sided Hypothesis; 
Early Stopping: Null, Alternative 

o _ . . _ Decide for 

Superiority 

0 I 
en, I I I I 

U, 

Iz 
_ Y : : : : 

Decide for 

l l l i | Non-Superior 

0.2 0.4 0.6 0.8 1.0 

Proportion of Fixed-Sample Study Proportion of Fixed-Sample Study 

Figure 1. Four categories of group sequential designs using a maximum of five analyses and 
O'Brien and Fleming-style boundaries. Type I error rate is 0.025 for the one-sided hypothesis tests 
and 0.05 for the two-sided hypothesis tests. 
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2. Design Unification 

2.1 A Unifying Family 

In general, the stopping boundaries that define a group 
sequential design are composed of three parts: (1) a boundary 
shape function that determines the relationship between the 
points that comprise a stopping boundary, (2) a "critical 
value" that is chosen to satisfy either size or power 
constraints, and (3) a reference hypothesis. The design in 
Figure la has upper boundary dj = GU-I 1 and lower 

J 
boundary aj = -GI 1. These boundaries are both of the 

3 
form 6R ? Gf(11j), where f(Ij) denotes the boundary shape 
function, G denotes the critical value, and 6R denotes the 
reference hypothesis. In a one-sided test (e.g., Figure ld), 
the lower boundary is shifted upward from 0 to 6+ (i.e., 
aj = -G71) 

To construct a unifying framework, we consider a design 
that uses stopping points aj < bj < cj < dj to define stopping 
sets that allow as many as three possible decisions at the jth 
(j = 1, I..., J) interim analysis: inferior (Xj e (-oc, aj]), 
superior (Xj e [dj, oc)), and equivalence (Xj e (bj, c)). 
We generalize previous work by allowing each boundary to 
have its own shape, critical value, and reference hypothesis: 
aj = z6a-Gafa(Ij); bj = 6b + Gbfb(IHIj); Cj = 6c-Gcfc(Ij); 
and dj = 6d+Gdfd(Ij). Thus, the upper boundary dj rejects 
the hypothesis 6 < 6d, the lower boundary aj rejects the 
hypothesis 6 > 6a, and the middle boundaries bj and cj 
reject 6 < 6b and 6 > 6c, respectively. The shape functions 
f* (1Q), critical values G*, and reference hypotheses 6* (where 
* denotes a, b, c, or d) can be independently specified for each 
boundary. As shown in Table 1, the structure of the stopping 
boundaries for the designs in Section 1.2 are all of this form, 
and in this regard, the framework unifies previous designs. 

As defined above, a group sequential design must have 
nonempty continuation sets at all but the Jth analysis. This 
constraint requires that aj < bj < cj < dj for j < J, 
and aj = bj, cj = dj, and aj < dj. The specification of 
the boundary shape functions and critical values completely 
determines the reference hypotheses as follows: 6a - 6b = 

Gafa(l) + Gbfb(l); 6c - ad = Gcfc(l) + Gdfd(l); and 
6a - 6d < Gafa(l) + Gdfd(l). For ease of interpretation, 
we redefine the reference hypotheses to incorporate these 
constraints. Specifically, we let 6- = Gcfc(1) + Gdfd(l); 

6+ = Gafa.(l) + Gbfb(l); 6# = Gafa(l) + Gdfd(l); EQ = 

1 - (6a/6#); and Eu = (6d/6#) + 1. Note that aj < dj implies 
that se + E,, > 1. We thus have 

aj = (1 - ef)6# - Gafa(j), 

bj = (1 - Ef)6# -6- + Gbfb(TIj), 

cj = (u- 1)6# + 6+ -Gcfc(j)v 

dj = (Eu-1)6# + Gdfd(Ti). (2) 

Note that although this parameterization explicitly incor- 
porates the finite termination constraints, it may be that 
the boundary shape functions cause bj to be larger than 

cj in some analyses. To avoid violating boundary order 
requirements we substitute bj = (aj + dj)/2 for bj and 
c; whenever b4 > c4. 

The boundary shape functions f* (Hj) can take any form 
as long as they maintain aj < bj < cj < dj. We 
restrict our attention to boundary shape functions that are 
nonincreasing because this avoids the undesirable possibility 
that subsequent stopping criteria are more stringent than 
earlier boundaries (e.g., di < dj when i < j seems 
unreasonable). Choosing f*(j) = A* + HI P* , where A* 
and P* are shape parameters, unifies the boundary shape 
functions of Whitehead and Stratton (set P* = A* = 1) 
and Wang and Tsiatis (set A* = 0). We have found that the 
addition of a third shape parameter provides added flexibility 
to the array of shape functions that may be used when 
designing a trial: f* (IIj) A* + I`1 P* (1 -Ij) R*. Further, 
the choice A* = 0, P* R* 0.5 corresponds to the 
sequential conditional probability ratio test (Xiong, 1995). In 
this function, A* e [0, oo), P* e (-oo, oo), and R* e [0, oo) 
are user-specified shape parameters. 

From a statistical viewpoint, the designs of equation (2) 
are structured around two hypothesis tests: an upper test of 
Ho+: 6 < (,E - 1)6# versus H1+: 6 > (u - 1)6# + 6+, 
and a lower test of Ho-: 6 > (1 - E)6# versus H1I: 6 < 
(1 - E)6# - 6-. The parameters se and Eu determine the 
location of these two hypothesis tests in units of 6#. Their 
use and interpretation is illustrated in Section 3. To find 
designs from the family of equation (2), we set operating 
characteristics for each of these hypotheses. We denote the 
type I error rate for the upper and lower null hypotheses by 
ceu and ae, respectively, and the power for the upper and 
lower alternatives by /3u and d3e, respectively. The operating 
characteristics are formally specified by the requirements 
Pr{XM < am;6 = (1 - f)6#} = oe, Pr{XM > dM;6 

(Eu -1)6#1 = atu, Pr{Xm < am; a =(-Ef)6# -6-} =Of 
and Pr{XM > dm;6 = (u - 1)6# + 6+} = u, where, as 
before, M denotes the analysis at which the study terminates. 

The design critical values (G*) can be found by computer 
search so that the stopping boundaries of equation (2) satisfy 
the preceding operating characteristics. These critical values 
are functions of the size, power, number and timing of 
analyses, and all four of the boundary shape functions. To 
find the G*'s, the boundaries and standardized hypotheses 
(a+, 6,, 6#) are first computed using initial guesses at 
G,. The operating characteristics of these initial boundaries 
under the four standardized hypotheses are then calculated 
by numerical integration of the sampling density. The initial 
guesses for the G* 's are then updated until boundaries 
satisfying the operating characteristics are obtained. Equation 
(1) is used to map either 6+ or 6- (but not generally both) 
to a desired value for ,+- [Lo or ,- _-,o, respectively, where 
,+ and ,u represent the design treatment effects (e.g., the 
minimally important difference). 

The unified family incorporates and extends the design 
families described in Section 1. In Section 3, we illustrate how 
se and Eu can be specified to give a continuum between one- 
sided (,e?+u = 1) and two-sided (,e?+u = 2) hypothesis tests 
and how the boundary shape parameters allow a continuum 
between early stopping only under the alternative hypothesis 
and early stopping under both the null and alternative 
hypotheses. This generalization allows greater flexibility in 
addressing clinical issues as well as a framework in which the 
formerly discrete design categories are easily compared. 
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Table 1 
Common group sequential stopping boundariesa 

One-sided test Two-sided test Two-sided test 

Design stopping: null, alternativeb stopping: alternative stopping: null, alternative 

Pocock ak =-GHr 0 5 

dk GH0.5 

O'Brien and ak =-GHj- 

Fleming dk = GH71 
P 

Wang and ak =-GH-P 

Tsiatis dk = GH-P 

Whitehead and ak = 61- G - GH- ak =-A - GH-1 ak =-G - GEL1 k k ~~~~~~~~~~~~~k 
Strattonc dk = G + GH-1 dk = A + GH-1 bk =-61 + G + GH1 

Ck = 61 -G- GH1 
dk = G?+GH-1 

Emerson and ak = 61-GH-I ak =-GHI p 

Fleming dk = GH-P bk =-61 + G?Ik 

Ck = 61 - GHkP 

dk = GHIP 
P 

Pampallona and ak = 61-GaHIP ak =-GdHI 

Tsiatis dk = GdHIk7 bk = -61 + G?UI 

Ck 61 - GCHk- 
P 

dk = GdH_ 

Equivalenced ak = 61/2 - GH 

dk = -61/2 + GHkP 

a In all designs, P and A are free parameters used to control boundary shape. G is found by computer 
search so that the design satisfies the operating characteristics. The Pampallona and Tsiatis designs defined 
here require two G parameters to allow asymmetric type I and type II errors. 

b A one-sided test with stopping only under the alternative or only under the null hypothesis is obtained 
using ak = -oo or dk = ??, respectively. 

C The two-sided test with stopping only under the alternative is described by Whitehead (1992), where 
specific values are given for A. The software implementation (PEST) allows general A, as well as asymmetric 
power requirements. 

d A form commonly used for testing the equivalence of two treatments. 

2.2 Implementation of the Unified Family 

Thus far, we have assumed that the number and timing of the 
interim analyses is fixed; however, it is frequently necessary 
to alter the pretrial plan because of logistical constraints that 
arise after the trial has started. This section outlines three 
approaches for implementing this unified family that offer 
flexibility in the number and timing of analyses. 

A simple strategy for design implementation is to calculate 
the stopping rules at each interim analysis using equation (2) 
and the pretrial critical values (G*) with the the values of Hj 
that correspond to the actual monitoring schedule. Emerson 
and Fleming (1989) found that minor deviations from the 
pretrial plan did not greatly affect the critical values for the 
one- and two-sided symmetric tests. Similar results hold for 
the critical values G* in the unified family. The boundary at 

the Mth analysis could then be based on a P value adjusted 
for the group sequential stopping rule. This approach will 
maintain the type I error, although the power of the design 
may be altered slightly. 

A more elegant solution is based on error-spending func- 
tions (Lan and DeMets, 1983). To apply this approach in 
the unified family, we would compute the error-spending 
functions that correspond to each of the pretrial boundaries 
using interpolation between prespecified analysis times. These 
functions can be used to find stopping points at any analysis 
time without changing the pretrial type I error rate and 
maximal sample size (statistical information). The details 
of how a general design from the unified family can be 
implemented as error-spending functions are given in the 
appendix. 
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The Lan and DeMets' approach maintains the type I error 
rate and maximal sample size. Pampallona, Tsiatis, and Kim 
(1995) applied error-spending functions with the objective of 
maintaining both the type I and type II error rates. This is 
accomplished by adaptive modification of the maximal sample 
size. At the jth analysis (which may or may not be at one of 
the planned times), a new maximal sample size is found so 
that the type I error and one of the power constraints (Oe or 
i3u) will be satisfied exactly if the (i+1)th analysis turns out to 
be the final analysis. This process is repeated at each interim 
analysis and ensures that the desired power requirements are 
satisfied. 

3. Example 
We consider a group sequential clinical trial to compare two 
treatments where the outcome of interest is whether a serious 
adverse event occurs shortly after a patient enters the study. 
In the SSR trial described earlier, an adverse event includes 
damage to the spine, unforeseen hospitalization, or death from 
any cause within 1 month of treatment. The trial objective 
is to compare the adverse event rate with SSR to that of 
standard therapy, and if found to be equivalent, to compare 
secondary endpoints such as quality of life. 

A maximum of J = 5 interim analyses are planned 
after successive groups of 12 patients have been accrued 
to each arm (i.e., after a total of 24, 48, 72, 96, and 120 
patients in the study). For each of the analyses, treatment 
comparisons will be based on the difference in the proportion 
of patients experiencing adverse events in the two treatment 
groups (standard therapy minus SSR). We examine various 
boundaries defined for the estimated event rate difference 
under the worst-case assumption that the true adverse event 
rate is 50% (variance a2 = 0.25). 

A conservative group sequential design that allows early 
stopping with decisions for both the null and alternative 
hypotheses in a two-sided hypothesis test is obtained from 
equation (2), using shape functions f* (Hj) = H-1 (an 
OBF boundary relationship), which in a five-analysis study 
gives the stopping boundaries shown in Table 2, Design 
1. In the SSR example, allowing early termination for 
the null hypothesis is not desirable because it does not 
enable the collection of additional information on secondary 
endpoints. In equation (2), the shape parameters for the 
middle boundaries (Pb and Pc) can be increased to remove 
the possibility for an equivalence decision at the interim 
analyses. Setting Pb = Pc = 2 eliminates the possibility for 
an equivalence decision at the third analysis (Table 2, Design 
2); setting Pb = Pc > 4 (Table 2, Design 3) gives a design 
that permits an equivalence decision only at the final analysis. 
Thus, it can be seen that the unified family allows continuous 
transition between designs that allow early stopping under 
both the null and alternative hypotheses and those that allow 
early stopping only under the alternative hypothesis. Note 
that a choice of Pb = Pc = oo will not stop early with 
an equivalence decision regardless of the number of interim 
analyses. 

The stopping criteria with an OBF design (Table 2, Design 
3) are very conservative. At the first analysis, such a design 
stops only when the difference in the adverse event rates is 
greater than 0.931 (in either direction); this occurs only if 
there are 12 adverse events in one group and none in the 
other. Such extreme criteria might be reasonable if we want 
to decide that the previously untested SSR is superior to 

standard therapy. However, it would not be reasonable to 
consider continuing the study if there were no adverse 
events under the standard treatment, but 11 of the 12 SSR 
patients had died. Thus, a traditional OBF design provides 
a reasonable level of conservatism for the superiority decision 
but does not provide sufficient protection against continuing 
the study if SSR is harmful. 

One way to address this problem might be to decrease the 
degree of conservatism in the lower boundary, thereby making 
it easier to stop if SSR looks worse than the standard therapy. 
A Pocock boundary relationship is less conservative; thus, we 
could consider using a Pocock lower bound and an OBF upper 
bound (Pa = 0.5, Pb = Pc = oo, Pd = 1.0). Design 4 in Table 
2 shows that, although this approach makes it easier to reject 
SSR, it still requires an excess adverse event rate of 0.493 in 
the first 24 patients (which corresponds to six extra adverse 
events under SSR) to do so. Because of previous experience 
with the standard therapy as well as the nature of the new 
treatment, there are still ethical concerns about continuing 
the study in these circumstances. 

When the control arm receives a well-established standard 
therapy, it may become necessary to increase the degree of 
sensitivity to the potential toxicity of experimental treatments 
beyond what is capable with a two-sided hypothesis test. 
Within the unified family, the parameters se and Eu can be 
altered to shift the hypotheses tested. A one-sided hypothesis 
test corresponds to setting se = 0 and Eu = 1 (Table 2, 
Design 5). Such a test increases the chance that the study 
will terminate early if the experimental treatment is observed 
to be worse than the standard therapy; however, it would 
not allow the evaluation of secondary endpoints if the two 
treatments have equivalent adverse event rates. In this setting, 
one could consider an equivalence trial (,E = Eu = 0.5; Table 
2, Design 6), but then it would not be possible to establish 
superiority of the SSR. 

Setting se = 0.5, but Eu = 1.0 (Table 2, Design 7) gives a 
lower boundary that, at the first analysis, decides against SSR 
if the adverse event rate is only 0.289 higher than the event 
rate under standard therapy. Depending on the particular 
setting, this added sensitivity may be sufficient to satisfy the 
ethical concerns. Such a design can be viewed as having a 
lower boundary that is similar to that of an equivalence test 
and an upper boundary that is similar to a test for superiority. 

In this example, SSR is thought to affect the size of the 
treated tumor, and thus the goal of the therapy is palliative 
treatment of pain and neurological damage. The investigators 
are especially interested in tracking any changes in tumor 
volume and degrees of spinal cord compression after patients 
have undergone SSR. For ethical reasons, it is first necessary 
to demonstrate that the treatment is not harmful and to 
evaluate the possibility that SSR might actually improve the 
adverse event rate. We ultimately select a group sequential 
design (Design 7, Table 2) that is sensitive to an excess of 
adverse events in the SSR arm early in the trial but that 
allows an equivalence decision to assess treatment effects on 
secondary endpoints. By varying the continuous parameters 
of the unified family of designs described in this paper, we 
were able to identify an appropriate design, even though the 
initial design explored was of a markedly different structure. 
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Table 2 
Boundaries for hypothetical studies in which the outcome is the difference in event rates. All 

designs have symmetric size and power characteristics (aef = cxu = 0.025; of = /m = 0.975). 

Analysis 1 Analysis 2 Analysis 3 Analysis 4 Analysis 5 
Boundary (N1 = 24) (N2 = 48) (N3 = 72) (N4 = 96) (N5 = 120) 

Design 1: Two-sided: O'Brien-Fleming with full stopping: 
(Pa = Pd = 1; Pb = Pe = 1; Ef = su = 1) 

Lower (ak) -0.919 -0.460 -0.306 -0.230 -0.184 
(bk) -0.062 -0.138 -0.184 
(ck) 0.062 0.138 0.184 

Upper (dk) 0.919 0.460 0.306 0.230 0.184 

Design 2: Two-sided: O'Brien-Fleming with full stopping: 

(Pa = Pd = 1; Pb = Pc = 2; Ef = Eu = 1) 

Lower (ak) -0.931 -0.465 -0.310 -0.233 -0.186 
(bk) -0.087 -0.186 
(ck) 0.087 0.186 

Upper (dk) 0.931 0.465 0.310 0.233 0.186 

Design 3: Two-sided: O'Brien-Fleming with alternative-only stopping: 
(Pa = Pd = 1; Pb = Pc = 4; Ef = Eu = 1) 

Lower (ak) -0.931 -0.466 -0.310 -0.233 -0.186 
Upper (dk) 0.931 0.466 0.310 0.233 0.186 

Design 4: Two-sided: O'Brien-Fleming upper; 
Pocock lower; alternative-only stopping: 
(Pa = 0.5, Pd = 1; Pb = Pc = oo; Eu = 1) 

Lower (ak) -0.493 -0.348 -0.284 -0.246 -0.220 
Upper (dk) 0.931 0.466 0.310 0.233 0.186 

Design 5: One-sided: O'Brien-Fleming upper; 
Pocock lower; alternative-only stopping: 

(Pa = 0.5, Pd = 1; Pb=Pe = ??; Ef = 0, Eu = 1) 
Lower (ak) -0.093 0.051 0.114 0.152 0.178 
Upper (dk) 0.890 0.445 0.297 0.222 0.178 

Design 6: Equivalence: O'Brien-Fleming upper; 
Pocock lower; alternative-only stopping: 

(Pa = 0.5, Pd = 1; Pb = P = ?0; et = Eu = 0-5) 
Lower (ak) -0.292 -0.148 -0.084 -0.047 -0.021 
Upper (dk) 0.691 0.246 0.098 0.024 -0.021 

Design 7: Superiority-Equivalence: O'Brien-Fleming upper; 
Pocock lower; alternative-only stopping: 

(Pa = 0.5, Pd = 1; Pb = Pe = oo; Ef = 0.5, Eu = 1) 
Lower (ak) -0.289 -0.145 -0.081 -0.043 -0.017 
Upper (dk) 0.931 0.466 0.310 0.233 0.186 

4. Discussion 

We have presented a large family of group sequential de- 
signs that includes many previously described stopping rules. 
Within the family, there are many seemingly different de- 
signs that have essentially equivalent properties. Thus, two 
users may choose different sets of parameters and end up with 
equivalent designs. The typical user will not vary all parame- 
ters in the search for a suitable stopping rule for a particular 
clinical trial. However, the continuous parameters controlling 
the size and power, the shifts of hypotheses, and the four sepa- 
rate boundary shape functions allow a user to easily compare 

the behavior of a spectrum of designs and to connect what 
were previously distinct families. 

The incorporation of such a broad family of designs into 
statistical software for group sequential clinical trials will fa- 
cilitate a user's search for an appropriate stopping rule. A 
design that is in some sense optimal within this large family 
also ensures that it is at least as good as the designs in the 
previously described families unified in this approach. The 
continuous parameterization of this unification of the previ- 
ously described designs allows the search for suitable stopping 
rules to proceed smoothly. For example, starting with an OBF 
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design for a two-sided hypothesis test with early stopping only 
under the alternative hypothesis, a user can progress continu- 
ously to, perhaps, Whitehead and Stratton's (1983) triangu- 
lar test for a one-sided hypothesis, with early stopping under 
either the null or alternative hypothesis. Hence, if an initial 
design does not have the desired behavior, a more appropriate 
design can be found through gradual modification of the de- 
sign parameters without having to select a different distinct 
design family. This was illustrated in Section 3, where the 
process of clinical trial design began with the investigation 
of two-sided hypothesis tests with symmetric early stopping 
under both the alternative and null hypotheses (Emerson and 
Fleming, 1989), but ended with the selection of a new hybrid 
design having asymmetric boundaries and being intermediate 
to one- and two-sided hypothesis tests. 

A more detailed investigation of optimality of designs with- 
in this family with respect to several frequentist and Bayesian 
properties is reported in Kittelson (1996), where the use of 
the boundary shape functions described here has also been 
explored for error-spending functions and Bayesian statistics. 
Computer programs implementing these designs are available 
from the authors upon request. 
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RESUME 

En recherche clinique, l'elaboration d'un essai sequentiel 
amene generalement 'a choisir entre plusieurs categories dis- 
tinctes de plans experimentaux, entre diff6rents types de quan- 
tification de l'effet, et entre diverses strategies de determina- 
tion d'une regle d'arret. Ce choix peut neanmoins limiter 
le champ des options possibles pour le plan experimental, 
avec, en corollaire, le risque de mal prendre en compte cer- 
taines considerations cliniques. Cet article decrit une famille 
de plans, qui non seulement permet d'apprehender des ap- 
proches dej"a connues au sein d'un cadre unifie, mais permet 
aussi de passer sans discontinuite d'une approche a l'autre. Ce 
cadre unifie devrait faciliter la construction de plans experi- 
mentaux mieux adaptes aux problemes cliniques. Quant a la 
famille de plans proposee, elle est construite a partir d'une 
generalisation d'un plan sequentiel comprenant quatre seuils 
critiques, dont les caracteristiques (type et emplacement) peu- 
vent etre determinees independamment pour chaque seuil. 
Des methodes basees sur une modelisation du risque d'erreur 
en fonction du temps (error-spending functions) permettent 
de calculer ces plans. L'ensemble de la procedure presentee 
est illustree par des exemples. 
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APPENDIX 

An Error-Spending Approach to 
Implementation of the Unified Family 

A pretrial design using the unified family will produce stop- 
ping rules with boundaries denoted by (aj, bj, cj, dj, j = 
1, ... , J). In this appendix, we derive an estimated error- 
spending function that corresponds to each stopping bound- 
ary, and we describe how these error-spending functions are 
used during the trial to maintain the type I error rate. The 
error-spending functions for the four boundaries of the unified 
family are denoted by Ea, Eb, Ec, and Ed. We require that 
these error-spending functions reproduce the pretrial stopping 
rules if the actual analysis timing happens to match the pre- 
trial plan; thus, at HI,... , Ij, the estimated error-spending 
functions must satisfy 

i 

Ed (Hj) Zd1Pr(Xk ? d d)/af, 

k=l 

Ec(H1j) P{Pr(bk < Xk < Ckl6C) 
k=I 
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+ Pr(Xk < ak6c) }/(1 -u), 

Eb(Hj) Z {Pr(ck > Xk > bkl6b) 
k=l 

+ Pr(Xk > dkk5b)}/(1 -O)) 

Ea(Hj) ZPr(Xk < ak6aa)/cYf, 
k=l 

where 6a = (1 -lEf#, 6b =(l-f)6#-6-, 6c = (Eu 6# + 

6+, and 6d = (,u-1)>#. We define E*(O) = 0 and then use 
linear interpolation between the preceding points to calculate 
E*(H) at any other time point with H < 1. If H > 1, then set 
E*(H) = 1. 

At any analysis time HjI, which is not necessarily the same 
as originally planned (Hj), there will be preceding stopping 
points a'j, b'j c'j, and dj (j = 1*. . . vi-1) determined accord- 
ing to the preceding error-spending functions. We then find 
stopping points a' and d' satisfying 

Pr(Xk > dk 6d) = auEd (Hj) 
k=1 

E Pr (X k < ak 1 aa) = af Ea (Hj) 
k=l_ 

The other stopping points are then defined as the smallest b' 
and the largest Cj satisfying aj < bj < c; < d' and 

Z{Pr(bk <Xk < C |c) ? Pr(Xk < ak I 6C)} 

k=1 

< (1 - Ou)Ec(H;), 

Z{Pr(b' < k < 6b 6d) + Pr(Xk > da 6b)} 
k=1 

< (1 - Of)Eb(j), 

Z{Pr(bk < Xk < Ck 6d) + Pr(Xk < a' 6d)} 

k=l 

< (1 - cu)Ed(j')v 

{P(k < Xk < Ck | ba) + Pr(Xk > dk ;) 

k=1 

< (1 - ot) Ea (Hj) 

Note that if the maximal sample size is reached, it may not 
be possible to satisfy the constraints for both a', and d'j, 
(where J' denotes the actual number of analyses in the trial, 
as opposed to the pretrial planned number of analyses J). In 
such a situation, the investigators must choose which of those 
two constraints takes priority. 
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