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Evaluating a Group Sequential Design in
the Setting of Nonproportional Hazards

Abstract

Group sequential methods have been widely described and implemented in
a clinical trial setting where parametric and semiparametric models are deemed
suitable. In these situations, the evaluation of the operating characteristics of a
group sequential stopping rule remains relatively straightforward. However, in
the presence of nonproportional hazards survival data nonparametric methods
are often used, and the evaluation of stopping rules is no longer a trivial task.
Specifically, nonparametric test statistics do not necessarily correspond to a
parameter of clinical interest, thus making it difficult to characterize alternatives
at which operating characteristics are to be computed. We describe an approach
for constructing alternatives under nonproportional hazards using pre-existing
pilot data, allowing one to evaluate various operating characteristics of candidate
group sequential stopping rules. The method is illustrated via a case study in
which testing is based upon a weighted logrank statistic.



Evaluation Under Nonproportional Hazards, 2

1. Introduction

Prior to conducting large scale confirmatory, or phase III, clinical trials it is common for researchers to
first conduct phase I and II exploratory trials concerned with toxicology and pharmacology. Although
these preliminary trials are generally not adequately powered to prove efficacy or non-inferiority, important
information regarding potential treatment benefits can often be gleamed before proceeding to a larger trial.
Figure 1 displays survival curves resembling those observed during a recent phase II trial considering the
potential efficacy of a new cancer chemotherapy treatment on all-cause mortality. In this phase II trial,
researchers observed that the experimental treatment being considered yielded a nonproportional hazards
effect on survival, generally characterized by a delayed effect on the hazard. Study sponsors hypothesized that
this delay in the separation of hazards may have been attributed to several factors, including the need for a
minimum time required for the treatment to show an effect within patients or because there may exist a subset
of the sickest patients for which the occurrence of an event is inevitable regardless of treatment assignment.
Given the observed treatment effect over mid to late followup times, it was agreed by the sponsors that it
would be appropriate to proceed to a larger confirmatory trial investigating the efficacy of the experimental
treatment. The statistical process involved in bringing this study to fruition involved three main steps:
(1) choosing a test statistic that would be likely to capture alternatives from the null hypothesis of equal
survival that were felt most scientifically relevant and plausible; (2) constructing alternatives that might
reasonably arise in a future study in order to evaluate the performance of the proposed test statistic; and
(3) choosing a group sequential stopping rule that would allow for early stopping in the event that sufficient
confidence in favor of a decision for efficacy or futility of the treatment were observed. It was recognized by
the study designers that, at least some, focus on the previously observed phase II data would be necessary to
suggest appropriate probability models for data which might be obtained during the confirmatory trial and
to evaluate the adequacy of potential stopping rules used to monitor accruing data. In this manuscript we
report our approach to the statistical design of the proposed trial and provide one framework for designing
and evaluating group sequential survival studies when pilot data suggest alternatives which deviate from the

usual proportional hazards assumption.

Early in the design process, it was agreed by the study sponsors and trial designers that some form of a

weighted logrank statistic, highlighting treatment effects occurring during mid to late followup, would be a
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Figure 1: Kaplan-Meier estimates of survival curves resembling those observed in a phase II trial considering
an experimental treatment for cancer on all cause mortality.

reasonable choice for use in the confirmatory trial. The G?7 class of weighted logrank statistics as defined

by Fleming and Harrington (1991) is given by

Ny + Ny 1/2 “ N
GPY = (W) Z’LU] |:)\1_] - )\O]:| ) (1)
1470 jEF

where N; denotes the initial sample size of group i, ¢ = 0, 1, F denotes the set of distinct observed failure times
in the pooled sample, w(t) is defined as {(n1:m0:)/(n1e + nor)} S(t—)?[1 — S(t—=)]", ni denotes the number
of persons at risk in group ¢ at time ¢, S (t—) denotes the Kaplan-Meier estimate of the pooled sample just
prior to time ¢, N (t) = dit/nir denotes the estimated hazard for group 4 at time ¢, and d;; represents the
number of deaths observed in group ¢ at time t. Thus, the G statistic represents a sum, over all failure
times, of weighted differences in the estimated hazards. Based upon the available pilot data, trial designers
concluded that the G1'! statistic, which places increased weight to hazard differences estimated near the
median survival time of the pooled groups, would be provide a functional of the survival distributions that
would efficiently detect delayed treatment effect alternatives taking the general form of those observed in

the phase II data.
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In designing the phase III trial, it was deemed ethically necessary that a group sequential analysis plan be
implemented to monitor data and stop the trial as soon as sufficient confidence in favor of efficacy or futility
was obtained. The use of group sequential methodology has become widespread in the conduct of clinic
trials. Many authors have addressed the design (Pocock, 1977; O’Brien and Fleming, 1979; Whitehead and
Stratton, 1983; Wang and Tsiatis, 1987; Emerson and Fleming, 1989), implementation (Lan and DeMets,
1983, Burington and Emerson, 2003), and analysis (Whitehead, 1986; Emerson and Fleming, 1990) of group
sequential trials. In particular, the body of group sequential methodology is well-defined for situations in
which the within-individual treatment effect is constant with respect to time. Common statistical techniques
that have been developed in this setting include the comparison of means of continuous data, proportions
or odds resulting from binomial data, and proportional hazards from censored time to event data. In
comparison, little attention has been devoted to the development of group sequential methods for monitoring

a treatment effect which may vary with time, as the pilot data in Figure 1 suggest.

In order to ensure desirable operating characteristics of the group sequential design ultimately selected
for use in the phase III trial, a comprehensive evaluation of multiple stopping rules was necessary. Emerson
et al. (2004b) describe a variety of frequentist design characteristics which might be examined in the most

commonly encountered statistical problems. Among them are

1. The scientific measures of treatment effect which will correspond to early termination for futility and/or

efficacy.

2. The sample size requirements as described by the maximal sample size and summary measures of the

sample size distribution (e.g., mean, 75th percentile) as a function of the hypothesized treatment effect.

3. The probability that the trial would continue to each analysis as a function of the hypothesized treat-

ment effect.

4. The frequentist power to reject the null hypothesis as a function of the hypothesized treatment effect,

with the type I error corresponding to the power under the null hypothesis.

5. The frequentist inference (adjusted point estimates, confidence intervals, and P values) which would

be reported were the trial to stop with results corresponding exactly to a boundary.
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Although these operating characteristics are relatively straightforward to evaluate in the setting of a time-
invariant treatment effect, as described by Emerson et al. (2004b), they have not been fully addressed in
longitudinal situations where the observed treatment effect within individuals may vary over the course of

follow-up.

In order to evaluate power curves, sample size distributions, and futility of continuing the trial, it is
necessary to construct alternatives at which these operating characteristics are to be estimated. Because our
choice of test statistic, G, does not necessarily correspond to a parameter of clinical interest, characterizing
meaningful alternatives from the null hypothesis can be difficult. Further, in order to fully address the
scientific question of interest it is generally preferred to present stopping boundaries based upon a statistic
which represents some clinically meaningful measure of treatment efficacy. This logic no longer holds when
using the nonparametric GU'! statistic since this statistic does not correspond to a specific parameter of
interest. Hence care must be taken when considering potential stopping rules in order to examine what

point estimates for clinically meaningful measures arise upon study termination.

In the remainder of the manuscript we describe the procedure used for evaluating and selecting a group
sequential stopping rule to be applied to the phase III confirmatory study. In order to evaluate the operating
characteristics of these designs, it was first necessary to construct alternatives which were deemed plausible
in the confirmatory trial given the prior information available regarding a nonproportional hazards treatment
effect. Section 2 introduces a bootstrapping procedure used to simulate potential hypothesis testing alter-
natives using the observed pilot data displayed in Figure 1. In Section 3, we introduce the four candidate
stopping boundaries that were originally considered in the design evaluation process. Section 4 presents
simulation results illustrative of an approach used to choose between the candidate rules defined in Section
3. Finally, Section 5 concludes with a discussion of the differences and challenges that arise when evaluating
group sequential stopping rules where early evidence indicates that the treatment effect of interest may vary

with time.
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2. Construction of hypothesis alternatives using observed pilot data

Frequentist operating characteristics are based on the sampling distribution of test statistics under various
alternative hypotheses. Hence, the definition of alternatives which should be considered when investigating
the operating characteristics of potential stopping rules is an essential component to the evaluation of group
sequential procedures. When parametric and semiparametric models are to be evaluated, the specification
of alternatives is trivial since they are generally defined by a particular parameter of interest (eg. the
hazard ratio in the case of the proportional hazards model). However, in a nonparametric setting, no such
parameterization exists and alternatives from the null hypothesis are no longer clearly defined. In this
section we consider the use of the pilot data presented in Figure 1 to simulate potential alternatives at which

candidate design operating characteristics are to be evaluated.

In general, the definition of alternatives can be based on such necessary information as patient enrollment
rates, treatment effects over time, and the survival experience and censoring distribution for each comparison
group as derived from pilot data. We propose the simulation of alternatives by resampling repeatedly
from the single set of observed Kaplan-Meier estimates of survival obtained from the phase II trial, first
considering the null survival distribution from which alternatives should deviate. In deciding upon a null
survival distribution, one can draw on the statistical questions raised by the available pilot data. That is,
the question posed by the pilot data is whether any observed differences might reasonably be obtained by
drawing two samples from a single population. Such spurious differences might arise, for example, when
the combined samples were representative of a true null distribution, but randomization into two treatment
groups produced large separation between survival curves. Alternatively, it might be the case that the control
group is representative of the true null distribution, but that random sampling led to a treatment group with
better survival than expected. Under the first scenario, we might choose the null survival distribution to be a
50-50 mixture of the estimated survival experience of the control and treatment samples from the pilot study,
while under the second scenario we might use estimates of the survival experience from the control sample
alone. Other scientifically reasonable options for the null survival distribution exist, including oversampling

healthier or sicker patients which may account for possible changes in eligibility criteria.

Given the existence of pilot data, one natural alternative to the chosen null distribution is the observed
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survival experience of the comparison group. However, one must also consider a variety of plausible alterna-
tives when evaluating the operating characteristics of a statistical test. To construct a range of alternatives
we consider mixtures of the control and comparison Kaplan-Meier estimates of survival from the pilot data.
For example if the null survival distribution is taken to be that of the control sample then we may consider
‘mixing in’ the survival experience of the comparison sample in order to obtain various alternatives. Thus
0% mixing would be indicative of no treatment effect on survival, 50% mixing would indicate a treatment
effect in which the survival experience of the treated group represents a 50-50 mixture of the control and
comparison survival experience from the available pilot data, and 100% mixing would correspond to a treat-
ment effect that results in a survival experience that is equivalent to that of the comparison sample in the
pilot study. Letting (¢14, tos, ..., tn;;) denote the n; observed failure times in treatment group ¢, i = 0,1, the
construction of a single sample of size N from an alternative defined by mixing parameter m would proceed

as follows:

1. Compute the Kaplan-Meier estimate of the survival distribution for the control and treatment groups

in the pilot study, Sy and Sy, respectively.

2. Define the alternative via the percentage that the control and treatment groups are to be mixed,

0<m<1.
3. Fori=0,1do

(a) Let N; = round(N x [(1 — i) — m]|).

(b) Sample N; survival times t; = ( 133, ty,) with replacement from (ty;,t2;, ..., tn,:,00) With
probablhty (1 — S’i(th‘), Sl(th) - S’i(tgi), ceeey S’z(tnﬂ) - O)

(c) For j =1,.... Ny, if t; = oo set 9; = 0, otherwise set §; = 1.

4. Combine the sampled survival times ¢ = (fy,#1) and event indicators & = (8¢, 01 ).

Of course, the creation of alternatives need not be restricted simply to mixing survival experiences from
the pilot study. Another option is to construct alternatives by oversampling the healthiest patients from

the pilot study in order to represent various treatment effects. In this setting, the alternative might be
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quantified by the weighting assigned to the healthiest patients. One advantage to this approach is that it
does allow for alternatives which correspond to greater effects than seen in the pilot data. To define similar
alternatives when using the mixing approach described above, one could potentially use a combination of
both mixing and oversampling healthy patients (with or without possible semiparametric extensions based
on proportional hazards or accelerated failure time models), to consider alternatives which correspond to

greater differences than were observed in the pilot data.

In this case study, we define the null survival distribution to be the Kaplan-Meier estimate of the control
survival distribution depicted in Figure 1 and consider alternatives which are defined in terms of mixtures
of the survival experience of the previously observed comparison sample. Specifically, when constructing
alternatives we will consider 0%, 20%, 40%, 60%, 80%, and 100% mixtures, where 0% mixing corresponds to
the control population from the original pilot data, and 100% mixing corresponds to the treated population

from the original pilot data.

3. Introduction of candidate stopping rules

In defining stopping boundaries we use the unified design family as proposed by Kittelson and Emerson
(1999). This particular design family encompasses all previously reported classes of group sequential designs,
including the Wang and Tsiatis (1987) family of boundary shape functions and the class of triangular tests
as proposed by Whitehead and Stratton (1983). Briefly, the unified family utilizes three parameters: the
P-parameter which controls the curvature of the stopping boundary (larger values of P make early stopping
more difficult), the R-parameter which allows for even greater flexibility of the curvature of boundaries
(larger values of R make early stopping easier), and the A-parameter for which choices of A with small

absolute value make stopping at early analyses more difficult.

In this and the following section, we will consider the operating characteristics of four group sequential
designs. We assume that the maximal number of accrued patients is 1000 (N=500 per treatment arm)
uniformly accrued to the study over a period of 3 years and each design is constructed to allow for 4 interim
analyses taking place at 12 months, 18 months, when 51% of subjects have experienced an event, and when

650 subjects have experienced an event. In selecting candidate designs, one-sided symmetric designs with
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early stopping under the null hypothesis were considered, however we note that equivalent stopping rules for
any one-sided test could have been created using a two-sided framework in the full parameterization of the
unified family. Also considered in the design selection process was the degree of early conservatism displayed
by candidate stopping rules. Due to our focus on late differences in survival, the majority of the proposed
group sequential designs evaluated in the current manuscript are highly conservative with respect to early
stopping in favor of futility (since the particular trial of interest would be required to carry on in order to

witness any treatment effect), but not so conservative that they fail to protect against harm.

Ultimately, in addition to a reference fixed sample design with one test occurring at 650 events, four
one-sided designs were chosen, with varying degrees of conservatism early on. The definitions of chosen

group sequential designs are as follows:

e DSN1: A one-sided level .025 Pocock (1977) stopping rule (corresponding to P = .5, R = 0, and
A = 0) on both the lower (efficacy) and upper (futility) boundaries. This design is constant on the
Z-statistic scale (See Figure 3(a)) and is generally regarded as being quite anti-conservative at early

analyses.

e DSN2: A one-sided level .025 test utilizing the O’Brien and Fleming (1979) stopping rule (correspond-
ingto P=1, R =0, and A = 0) on both the lower (efficacy) and upper (futility) boundaries; See
Figure 3(b). Although this particular design is generally regarded as being highly conservative in early
analyses, in the setting of late diverging hazards it still may not yield the amount of conservatism

required early on.

e DSN3: A one-sided level .025 test parameterized using the Wang and Tsiatis (1987) family of shape
functions. The stopping rule for this particular design has an O’Brien-Fleming lower (efficacy) bound-
ary corresponding to P = 1.0, R = 0, and A = 0, and an upper (futility) boundary corresponding to

P =1.5, R=0, and A =0, which is extremely conservative at early analyses; See Figure 3(c).

e DSN4: A one-sided level .025 test parameterized using the full flexibility of the unified design family.
The lower (efficacy) boundary takes P = 1.2, R = 0, and A = 0 (more conservative than the O’Brien-

Fleming stopping rule), while the upper (futility) boundary takes P = 0, R = 0.5, and A = 0.3; See

http://www.bepress.com/uwbiostat/paper307
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Figure 3(d). DSN4 was chosen to increase the degree of conservatism of the previous designs on the

efficacy boundary, while shifting the futility boundary to increase the overall power of the design.
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Figure 2: Proposed group sequential stopping rules. Boundaries are plotted on the Z-statistic scale, assuming
equally spaced analysis times.
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4. Evaluation of candidate stopping rules

In this section, we consider the evaluation of those group sequential designs defined in Section 3 when
alternatives are constructed from the nonproportional hazards pilot data depicted in Figure 1(b). As noted
earlier, all evaluations are based upon the G''! weighted logrank test statistic, the test statistic chosen by
the study sponsor to best capture the general hypothesized alternative. In a manner analogous to Emerson
et al. (2004b), the presented evaluation focuses on a variety operating characteristics, including stopping
probabilities under various alternatives, power curves, sample size distributions, and measures of inference

on the decision boundaries.

4.1 Stopping probabilities

Due to ethical and economic concerns, clinical trial researchers are often concerned with the likelihood
of stopping a trial early due to high confidence in favor of efficacy, futility, or harm. To address this,
simulated stopping probabilities by treatment effect, defined in terms of the percent mixing as described in
Section 2, for each of the previously described group sequential stopping rules are presented in Figure 4.
Stopping probabilities were estimated by repeatedly sampling from the pilot data depicted in Figure 1(b)
under various levels of mixing, then counting the number of simulations that were stopped at each analysis
time. Presented estimates are based upon 5000 simulations performed at each alternative. In each plot,
the numbered contours represent the cumulative probability of stopping at the analysis time given by the
number on the contour. In addition, the vertical length encompassed by light colored regions between two
numbered contours reflects the probability of stopping in favor of efficacy at the latter analysis time, while
the vertical length encompassed by dark regions between two contours indicates the estimated probability

of stopping in favor of futility at the latter analysis time.

Figure 4(a) displays stopping probabilities for the Pocock design. Under the null hypothesis of 0% mixing,
the probability of stopping in favor of efficacy was estimated to be 1.10%, .60%, .90%, and .025% at the
first, second, third, and fourth analyses, respectively, resulting in an estimated type I error rate of 2.85%.
Under the full alternative of 100% mixing, the probability of stopping in favor of efficacy was estimated to

be 1.40%, 3.05%, 35.40%, and 9.95% at the first, second, third, and fourth analyses, respectively, resulting
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Figure 3: Simulated stopping probabilities when selected group sequential designs are applied to alternatives
constructed from the nonproportional hazards pilot data depicted in Figure 1(b).

in an overall power of 49.80% at the 100% mixing alternative. Of particular interest is the high stopping
probabilities in favor of futility at early analyses under the full alternative when the Pocock boundary was

applied in this setting of late diverging hazards.

Estimated stopping probabilities for the O’Brien-Fleming design are displayed in Figure 4(b). We can
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see that the contour lines representing the first two analysis times are nearly horizontal at zero for any
treatment effect, indicating that there is little to no chance of early stopping in either direction at either of
these analyses when the O’Brien-Fleming design is invoked. Under the null hypothesis, the probability of
stopping in favor of treatment was estimated to be 0 at the first two analyses, 0.95% at the third analysis
and 1.10% at the fourth and final analysis, resulting in an overall type I error of 2.05%. Under an alternative
of 100% mixing, the probability of stopping in favor of efficacy was estimated to be 47.70% at the third

analysis and 28.85% at the final analysis, resulting in an overall power of 76.55%.

Due to the extreme early conservatism of DSN3, no trials were stopped at the first two analyses (see
Figure 4(c)). Under 100% mixing, the probability of stopping in favor of efficacy at the third analysis when
using the DSN3 stopping rule was estimated to be 47.30%, while the probability of stopping for efficacy at

the final analysis was estimated to be 29.80%.

Finally, in Figure 4(d) we can see that although no simulations stopped in favor of efficacy at the first or
second analysis, there does exist a reasonable chance of stopping early in favor futility at these early analyses
when DSN4 was invoked. The probability of stopping early in favor of futility under the null hypothesis
was estimated to be 8.85% at the first analysis, 2.00% at the second analysis, 5.55% at the third analysis,
and 81.40% at the final analysis, implying that the estimated type I error for the design was 2.20%. Under
a treatment effect of 100% mixing, the probability of stopping early in favor of efficacy was estimated to be
zero at the first two analyses, 40.00% at the third analysis and 33.30% at the final analysis, resulting in an

estimated power of 73.30%.

4.2  Statistical power

From a statistical perspective, it is clearly of great interest to examine the power curve associated with
a given testing procedure. To complement the stopping probabilities displayed in Figure 5, plots of power
and relative power as a function of treatment for each of the considered designs are provided in Figure 6.
From Figure 6(a) we can see that great differences in the power curves were not found when comparing the
fixed sample design, DSN2, DSN3, and DSN4, however the DSN1 (Pocock) design obtained substantially

lower power than any of the other four designs considered. We note that this loss in power is attributed
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to the rather anti-conservative Pocock futility boundary, allowing many trials to stop early before the late
occurring treatment effect had been observed. Figure 6(b) better reflects decreases in power due to using a
group sequential design over a fixed sample design with the same maximal sample size. The general trend
of the plot suggests that as treatment effect increases, larger disparities in power are witnessed between the
fixed sample test and the considered group sequential designs. Under the full alternative, DSN2 obtained
1.75% lower power when compared to the fixed sample test, DSN3 suffered a decrease of 1.20% power
relative to the fixed sample design, and DSN4 revealed a 5.00% drop in power compared to the fixed sample
design. As mentioned above, under an alternative of 100% mixing DSN1 yielded the largest disparity in

power relative to the fixed sample test, with an estimated drop of 28.5%.

4.3  Sample size distribution

Noting that in the group sequential setting the sample size is random, one should also consider the sample
size distribution before deciding upon a stopping rule. Figures 5(c) and 5(d) yield plots of the average number
of patients and the average number of events required by treatment effect for each of the considered designs.
The average number of patients at each alternative was estimated by repeatedly simulating 5000 survival
curves under the respective alternative and applying each stopping rule to the simulated data. This process
yielded an estimate of the sample size for each simulation, allowing the number of patients required for each
sample to be averaged over the total number of simulations. In Figure 5(c), we can see that little to no
difference in the average number of required patients is found when comparing the 1000 accrued patients
required by the fixed sample design to DSN2 and DSN3, regardless of the alternative considered. However,
there is a decrease in the average number of patients required when either DSN1 or DSN4 are invoked.
Under the null hypothesis, the average number of accrued patients was estimated to be 744 for DSN1, and
932 for DSN4. Hence we see efficiency gains, relative to the fixed sample test, for the loss of power noted

in Figures 5(a) and 5(b).

The average number of events required by each design was also evaluated. Figure 5(d) displays the
average number of required events by treatment effect. Here we can see that all of the group sequential
designs considered require (on average) fewer than the 650 events planned for the fixed sample test, regardless

of treatment effect. Under the null hypothesis of 0% mixing, the average required number of events was
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Figure 4: Estimated power curves (Figures (a) and (b)) and sample size distributions (Figures (c¢) and (d)

when selected group sequential designs are applied to alternatives constructed from the nonproportional

hazards pilot data depicted in Figure 1(b). Figure 5(b) represents power relative to the fixed sample design.

Figure 5(c) and 5(d) display the average number of patients and average number of events by treatment
effect, respectively.

estimated to be 323 for the Pocock design (DSN1), 529 for the O’Brien-Fleming design (DSN2), 549 for

DSN3, and 579 for DSN4. This ordering of the average number of events by design is nearly the same

throughout all treatment effects, with exception to the number of events required by DS N4 relative to DSN2

http://www.bepress.com/uwbiostat/paper307



Evaluation Under Nonproportional Hazards, 16

and DSN3. In this case, as the treatment effect began to grow, the average number of events required by
DSN4 fell at a quicker rate than either DSN2 or DSN3. At the full alternative of 100% mixing, the
expected number of events was estimated to be 401 for DSN1, 570 for DSN2, 579 for DSN3, and 554 for
DSNA4.

4.4  Inference on the boundary

Finally, to examine clinical measures of treatment effect which correspond to boundary decisions, the
right-hand column of Table 1 yields minimal (for efficacy) and maximal (for futility) estimates of treatment
effect encountered when the O’Brien-Fleming (DSN2) and DSN4 stopping rules were applied to the range
of alternatives from 0% to 100% mixing. For this particular case study we present estimates corresponding
to the Cox estimate of the hazard ratio and a trimmed hazard ratio considering only the inner 50% of the
observed data. Again, estimates are based upon a total of 5000 simulated trials at each alternative. At the
first analysis, we can see that no trials were stopped under the one-sided O’Brien-Fleming boundary, while
stoppage only occurred in favor of futility under DSN4. In this case, the hazard ratio of 0.963 implies that
it is plausible, under the DSN4 stopping rule, that a study could be stopped early in favor of futility when

testing is based upon the G':! statistic, despite the data showing a 4.7% overall decrease in the hazard.

At the second analysis time, none of the simulated trials were stopped in favor of efficacy using either the
O’Brien-Fleming stopping rule or the DS N4 stopping rule, while early stoppage in favor of futility occurred
at the second analysis under both designs. With respect to the O’Brien-Fleming design, the hazard ratio
of 1.278 implies that of all simulated trials stopped early for futility, the maximal treatment effect observed
suggested a 27.8% increase in the hazard associated with treatment. The hazard ratio of 1.079 observed
under DSN4 suggests that a 7.9% increase in the hazard associated with treatment was required for any of

the simulated studies to be stopped early in favor of futility at the second analysis time.

At the third interim analysis, trials were stopped early in favor of both efficacy and futility for each of
the considered designs. The hazard ratio of 0.946 observed under DSN2 suggests that it is plausible that a
study could be stopped early in favor of efficacy despite the data showing only a 5.4% overall decrease in the

hazard. With respect to futility, the hazard ratio of 0.842 implies that at least one trial stopped early for
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Table 1: Minimal (for efficacy) and maximal (for futility) estimates of treatment effect by analysis time
when testing is based upon the G''! statistic. Alternatives were constructed using the pilot data depicted
in Figure 1. Hazard ratios represent the hazard of the treatment group relative to the control group.

Summary DSN1 (Pocock) DSN2 (OBF) DSN3 DSN4
Statistic Efficacy Futility Efficacy Futility Efficacy Fufility Efficacy Fufility
Time 1
7 statistic -7.362 6.285 -12.306 1.293 -6.708 5.524 -10.824 1.344
Hazard Ratio - — - 0.643 - - — 0.963
Trimmed HR - - —00 - - - —o0
Time 2
7 statistic -4.825 3.180 -6.810 1.823 -4.287 2.434 -5.783 1.883
Hazard Ratio - 1.770 - 0.961 - 1.278 - 1.079
Trimmed HR - 1.826 — 0.877 — 1.367 - 1.134
Time 3
7 statistic -2.388 -0.933 -2.545 1.583 -2.355 -1.019 -2.500 1.394
Hazard Ratio 0.908 0.803 0.888 1.058 0.946 0.842 0.924 1.013
Trimmed HR 0.914 0.754 0.877 1.115 0.926 0.759 0.902 1.032
Time 4
7 statistic -1.991 -1.991 -1.973 -1.973 -1.993 -1.993 -1.979 -1.979
Haz Ratio 0.924 0.759 0.924 0.759 0.958 0.808 0.970 0.808
Trimmed HR 0.911 0.722 0.922 0.722 0.944 0.724 0.944 0.724

futility at the third analysis even though the data revealed a 15.7% overall decrease in the hazard associated
with treatment. Similar results for the efficacy boundary were also observed under DSN4 at the third and
final analyses, though DSN4 was found to be much more conservative with respect to stopping in favor of

futility at the third analysis when compared to the O’Brien-Fleming stopping rule.

5. Discussion

The use of group sequential methodology has become widespread in the conduct of clinic trials. Because each
clinical trial presents unique scientific and statistical issues it is important to carefully evaluate candidate
group sequential designs to ensure desirable operating characteristics. Although this methodology is well-
defined for situations in which the within-individual treatment effect is constant with respect to time (see
for example Emerson et al. (2004b)), when prior evidence for time-varying treatment effects is present the
evaluation of potential designs is not a trivial task and this problem is made more complicated when testing

is based upon a nonparametric statistic.

In order to evaluate power curves, sample size distributions, and measures of futility, one must specify
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the alternatives at which test statistics are to be computed. When parametric and semiparametric models
are to be evaluated, the specification of alternatives is trivial since they are generally defined by a particular
parameter of interest (eg. the hazard ratio in the case of the proportional hazards model). However,
under nonproportional hazards when no parametric model is to be assumed, alternatives from the null
hypothesis are no longer clearly defined. We have proposed a procedure for the simulation of hypothesis
testing alternatives that does not require the assumption of a parametric model by using observed pilot data.
Specifically, we propose that potential alternatives could be constructed by considering various mixtures of
the estimated survival experience observed in the pilot data or by oversampling healthier or sicker patients.
Ultimately, upon simulating alternatives one is able to estimate commonly examined operating characteristics
such as power curves, sample size distributions, stopping probabilities, and estimates of treatment effect that

occur on the boundaries, allowing for the comparison of potential group sequential stopping rules.

In order to fully address the scientific question posed by a trial it is generally preferred to present stopping
boundaries based upon a statistic which represents some clinically meaningful measure of treatment efficacy.
This logic no longer holds when using a nonparametric test statistic such as a weighted logrank statistic
since one is no longer testing a specific parameter of interest. Hence care must be taken when considering
potential stopping rules in order to examine what point estimates for clinically meaningful measures arise
upon study termination. Although we have demonstrated our methods in a hypothetical setting, the approach
described here was one used in the planning of a Phase III study designed to investigate the efficacy of an
experimental treatment for lung cancer. Of great interest to the investigators were the tradeoffs between
efficiency (as measured by average sample sizes) and loss of power (in the absence of increasing sample size
to accommodate interim analyses), as well as the potential magnitude of the treatment effect corresponding
to statistically significant results. Through the presented case studies we demonstrated that contradictions
between decisions based upon particular weighted logrank statistics and clinically meaningful measures of
treatment effect can frequently arise. In particular, it was demonstrated that in cases where our test statistic
rejected in favor of efficacy, commonly used measures of treatment effect were sometimes found to indicate
harm. Similar contradictions were found when decisions in favor of futility were made. This potential
for contradiction can have bearing on the functioning of the data safety monitoring committee, regulatory
agencies, and the eventual marketing of a new treatment. Careful evaluation of the design is therefore crucial

to ensure that everyone understand and agree upon the appropriateness of a stopping rule selected for a
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particular study.

When evaluating designs in the setting of nonproportional hazards, we have not extended the methods
of Emerson et al. (2004a), Emerson et al. (2004b), and Emerson et al. (2004c) for describing inference and
futility measures. The presentation of frequentist confidence intervals and Bayesian posterior probabilities
and credible intervals is made quite difficult due to the lack of a single parameter measuring treatment
effect. We note that futility measures such as conditional power could be estimated in this setting, but are
computationally quite complicated when using simulations because conditioning on interim results requires
a prohibitively large number of simulations. Further, Gillen and Emerson (2005) compare the choice of
orderings of the sample space with respect to the calculation of corrected P-values under nonproportional
hazards. They show that the Z-statistic ordering (Chang, 1989) consistently results in lower P-values relative

to the analysis time ordering (Tsiatis et al., 1984) under late occurring treatment effects.

Although the evaluation techniques proposed here are based on simulation and can be time intensive, they
are relatively straightforward in nature and do provide reasonable estimates of the operating characteristics
generally considered when evaluating potential designs. Thus, given the importance of a priori planning for

large scale clinical trials, this investment in time should be deemed negligible.

The research was supported in part by grant # HL69719 from the National Heart, Lung, and Blood

Institute.
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