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Abstract

In clinical trials investigating the treatment of chronic, progressive diseases, a common design is to
make some physiologic measurement of the disease state at the start of the trial, randomize patients to
either the experimental treatment or some control treatment (placebo), follow the patients over some
period of time, and then measure once again the physiologic measurement of the disease state. The
question then arises: How should the baseline measurements made prior to randomization be used?
In this manuscript, I consider several common strategies that might be used in this setting, including
analyzing only the follow-up measurement, analyzing the change in measurements, and the analysis of
covariance (ANCOVA) approach of adjusting for the baseline measurement in a linear regression model.
I illustrate several different ways to motivate the use of ANCOVA, as well as examining the settings in
which not measuring baseline might be preferred. I conclude with a discussion of how these results might
change when using a randomized crossover design.

1 Introduction

In clinical trials investigating the treatment of chronic, progressive diseases, a common design is to make
some physiologic measurement of the disease state at the start of the trial, randomize patients to either the
experimental treatment or some control treatment (placebo), follow the patients over some period of time,
and then measure once again the physiologic measurement of the disease state. Take for instance a double-
blind, placebo controlled, randomized clinical trial (RCT) of a new drug in the setting of hypertension. Upon
recruiting a patient into the RCT, we would typically measure the patient’s systolic blood pressure (SBP)
for the purposes of determining eligibility for the trial. We might further decide to stratify randomization of
patients on SBP in order to ensure balance across treatment arms with respect to severity of hypertension.
Then after treating the patients with either the experimental treatment or placebo for the period of, say, a
year, we again measure the SBP of all patients, and analyze the data to decide whether the experimental
treatment is associated with a scientifically important and statistically significant lower SBP when compared
to placebo. The question is: How do we use the baseline (pre-randomization) measurement of SBP in the
data analysis? Owing to the randomized nature of the study, there are several choices that will each estimate
the causal effect of the treatment in an unbiased fashion:

1. Ignore baseline and analyze the final measurements. By virtue of randomization, the distribution of
SBP at the start of the study is equal in each treatment arm. Hence, any differences in the distribution
of SBP at the end of the trial is directly attributable to the effect of the experimental treatment.

2. Analyze the change in measurements over the course of the study. For each patient, we compute the
difference between the final SBP and their baseline SBP, and then compare the treatment arms with
respect to the change in measurements.
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3. Adjust for the baseline measurement as a covariate in a linear regression model of final measurement
for each patient by treatment arm.

4. Adjust for the baseline measurement as a covariate in a linear regression model of the change in
measures for each patient by treatment arm.

In my experience, the second of these methods is the one most commonly advocated by clinical inves-
tigators. It seems only natural to them: we are interested in an intervention that would either change the
pathophysiologic process for the better or (at least) lessen the change in the pathophysiologic process for
the worse. In this manuscript, I explore the settings in which one of the approaches might be preferable to
the others. In this exploration, I illustrate the seemingly paradoxical result that suggests that in RCT that
second method (analyzing the change in measurements) is never an optimal choice, while there are situations
that any of the other three is optimal.

It should be noted that the results presented herein are specific to RCT, because we make extensive use
of the fact that the distribution of baseline measurements is known to be the same in both treatment groups.

2 Notation in the Homoscedastic, Independent Sample Setting

Let Yktj be the SBP measurement in the kth treatment group (k = 1 for experimental treatment, k = 0 for
placebo) at time t (t = 0 for the baseline (pre-randomization) measurement, t = 1 for the end of treatment
measurement) in the jth patient (j = 1, . . . , ni). We assume all subjects are independent and that the
subjects in the experimental treatment group are different that those in the placebo group.

Suppose Yktj ∼ (µkt, σ
2), meaning that for a population receiving treatment k, the average measurement

pre-randomization would be µk0 with a standard deviation of σ, and the average measurement post-treatment
would be µk1 with a standard deviation of σ. We presume that individuals are independent, and that repeat
measurements made on the same subject in the kth group have correlation ρ. Thus corr(Yk1j , Yk0j) = ρ,
corr(Yktj , Ykt′j′) = 0 for j 6= j′, and corr(Yktj , Yk′t′j′) = 0 for k 6= k′. (This ”homoscedastic” model presumes
not only that the treatment does not affect the variability of the measurements, but also that the treatment
does not affect the correlation of the baseline and follow-up measurements.)

We presume a randomized study, so we have µ10 = µ00. We are ultimately interested in estimating
θ = µ11 − µ01.

In order to derive general results, we consider the distribution of linear combinations of the form ∆kj =
Yk1j − akYk0j . Using simple properties of expectation and covariances, we find

E [∆kj ] = E [Yk1j − aiYk0j ] = µk1 − akµk0
V ar (∆kj) = V ar (Yk1j − akYk0j) = σ2 + a2kσ

2 − 2akρσ
2 =

(
1− 2akρ+ a2k

)
σ2

so letting

∆k· =
1

nk

nk∑
j=1

∆kj

we can derive moments

E
[
∆k·
]

= µk1 − akµk0

V ar
[
∆k·
]

=

(
1− 2akρ+ a2k

)
σ2

nk
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Now, for a specified value of a, we define θ̂(a) = ∆1· −∆0·, and find distribution moments

E
[
θ̂(a)

]
= (µ11 − a1µ10)− (µ01 − a0µ00) = θ − (a1µ10 − a0µ00)

= θ − (a1 − a0)µ00

and θ̂ is unbiased for θ for arbitrary µ00 if and only if a1 = a0 = a.

Now we can find distribution variance

V ar
[
θ̂(a)

]
=
(
1− 2aρ+ a2

)
σ2

(
1

n1
+

1

n0

)

Special cases of interest are

1. Ignore baseline and analyze the final measurements. This corresponds to a = 0, in which case

V ar(θ̂(0)) = σ2

(
1

n1
+

1

n0

)
.

2. Analyze the change in measurements over the course of the study. This corresponds to a = 1, in which
case

V ar(θ̂(1)) = 2σ2 (1− ρ)

(
1

n1
+

1

n0

)
.

By differentiating the above expression with respect to a, we can find the form of θ̂ with minimal variability
as having a = ρ, in which case

V ar(θ̂(ρ)) = σ2
(
1− ρ2

)( 1

n1
+

1

n0

)
.

Note that

1. For ρ < 0.5, V ar(θ̂(0)) < V ar(θ̂(1)), and throwing away the baseline value is more efficient than
comparing the change in measurements across treatment arms.

2. For ρ = 0.5, V ar(θ̂(0)) = V ar(θ̂(1)), and throwing away the baseline value is just as efficient as
comparing the change in measurements across treatment arms. (This is the only point of equality
between these two estimators.)

3. For ρ > 0.5, V ar(θ̂(0)) > V ar(θ̂(1)), and throwing away the baseline value is less efficient than com-
paring the change in measurements across treatment arms.

4. For all −1 ≤ ρ ≤ 1, V ar(θ̂(ρ)) ≤ V ar(θ̂(0)) and V ar(θ̂(ρ)) ≤ V ar(θ̂(1)).

5. For ρ = 0, V ar(θ̂(0)) = V ar(θ̂(ρ)). (This is the only point of equality between these two estimators.)

6. For ρ = 1, V ar(θ̂(1)) = V ar(θ̂(ρ)). (This is the only point of equality between these two estimators.)

Note that the third observation above suggests that when ρ is known, the use of θ̂(ρ) is the best linear
estimator, as it is always at least as good as either of the other two approaches based on a = 0 or a = 1.
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3 An Alternative Derivation When Measurements are Normally
Distributed

Consider the same homoscedastic setting as in section 2 with σ2 and ρ known constants, but now suppose
that it is known that vector (Yk0j , Yk1j) are bivariate normal. We can then write the density for our data as

a function of ~θ = (µ00, µ01, µ11) as

f(~Y ; ~θ) =

1∏
k=0

nk∏
j=1

1

2πσ2
√

(1− ρ2)
exp

[
− (Yk0j − µ00)2 − 2ρ(Yk0j − µ00)(Yk1j − µk1) + (Yk1j − µk1)2

2σ2(1− ρ2)

]

= g(θ)h(~Y ) exp

[
−

3∑
`=1

c`(θ)T`(~Y )

]
,

where the familiar form of an exponential family density is found by expanding the product and grouping
terms, with

g(~θ) =

[
1

2πσ2
√

(1− ρ2)

]n0+n1

exp

[
− (n0 + n1)µ2

00 − 2ρ(n0µ01 + n1µ11)µ00 + n1µ
2
11 + n0µ

2
01

2σ2(1− ρ2)

]

h(~Y ) = exp

−∑1
k=0

∑nk

j=1

(
Y 2
k0j − 2ρYk0jYk1j + Y 2

k1j

)
2σ2(1− ρ2)


c1(~θ) =

µ00

σ2(1− ρ2)

c2(~θ) =
µ01

σ2(1− ρ2)

c3(~θ) =
µ11

σ2(1− ρ2)

T1(~Y ) =

1∑
k=0

nk∑
j=1

(Yk0j − ρYk1j)

T2(~Y ) =

n0∑
j=1

(Y01j − ρY00j)

T3(~Y ) =

n1∑
j=1

(Y11j − ρY10j).

Note that in that exponential family density, ~θ is a three dimensional vector, and the range of ~θ contains
an open rectangle in 3 dimensions. Hence, we know that ~T is a complete sufficient statistic.

Furthermore, because θ̂(ρ) = T3(~Y )/n1 − T2(~Y )/n0 is unbiased for θ and a function of the complete

sufficient statistic, we know that θ̂(ρ) is the uniform minimum variance unbiased estimator of θ.

4 Settings Where Not Measuring Baseline is Optimal

Even when ρ is known, there is a setting in which a better approach would be to use only the final measure-
ment.
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Suppose the measurement of Yktj is extremely expensive. Then the limiting factor in our experimental
design might be the number of measurements we have to make.

In order to estimate θ̂(ρ), we must make 2(n0 + n1) measurements– one for each subject at baseline and

one for each subject at the end of treatment. As noted above, the variance of θ̂(ρ) is given by

V ar(θ̂(ρ)) = σ2
(
1− ρ2

)( 1

n1
+

1

n0

)
.

But suppose that we doubled the number of subjects to n∗0 = 2n0 and n∗1 = 2n1 and we did not measure

baseline values at all. In this case, we would use θ̂(0) which has variance

V ar(θ̂(0)) = σ2

(
1

n∗1
+

1

n∗0

)
= .

σ2

2

(
1

n1
+

1

n0

)
.

We can then consider the setting in which V ar(θ̂(0)) < V ar(θ̂(ρ)) as

V ar(θ̂(0)) < V ar(θ̂(ρ))

σ2

2

(
1

n1
+

1

n0

)
< σ2

(
1− ρ2

)( 1

n1
+

1

n0

)
1

2
<
(
1− ρ2

)
ρ <

√
1

2
= 0.7071

Hence, if there is no other need to measure baseline values, and if it is relatively easier and cheaper to
accrue patients than to make measurements on them, then the most efficient design is to measure and use
only the follow-up values at the end of treatment, unless the correlation within subjects is extremely high
(ρ > 0.7071).

Of course, it is not unusual for patient eligibility to be based on the pre-randomization value of the
measurement, in which case, the advantage of ignoring the baseline measurement is gone.

5 Settings Where ρ is Unknown: ANCOVA

The above derivations assumed that both ρ and σ2 were known in a homoscedastic setting. It is most often
the case, however, that neither ρ nor σ2 are known, and we must use estimates. One approach to such
estimation is to use a linear model in which we adjust for the baseline value as a covariate.

To further explore this approach, it is useful to modify our notation. Define outcome vector ~Z, treatment
vector ~X, and baseline vector ~W for i = 1, . . . , n = n0 + n1 by

Zi =

{
Y01i i ≤ n0
Y11j i = n0 + j

Xi =

{
0 i ≤ n0
1 i > n0

Wi =

{
Y00i i ≤ n0
Y10j i = n0 + j

We then fit ordinary least squares (OLS) model

E[Zi |Xi,Wi] = β0 +Xiβ1 +Wiβ2
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obtaining OLS estimates

β̂1 =
1

1− r2XW

[
VXZ
VXX

− VXWVWZ

VXXVWW

]
β̂2 =

1

1− r2XW

[
VWZ

VWW
− VXWVXZ
VXXVWW

]
,

where for sample means Z ·, X ·, and W ·

rWX =
SXW√

SXXSWW

SXX =

n∑
i=1

(Xi −X ·)2,

VXX = SXX/n,

SXW =

n∑
i=1

(Xi −X ·)(Wi −W ·),

VXW = SXW /n,

with similar definitions for VWW , VXZ , and VWZ . Now by randomization, we know that Wk and Xk

are independent. Thus under the assumption that the randomization ratio approaches some constant (i.e.,
n1/n→ λ ∈ (0, 1) as n→∞), the consistency of sample moments for population moments and the properties
of convergence in probability then provide that

VXW →p 0

rXW →p 0

VXX →p λ(1− λ)

VWW →p σ
2

VZZ →p σ
2 + λ(1− λ)(µ11 − µ01)2

VWZ →p ρσ
2

VXZ →p λ(1− λ)(µ11 − µ01) = λ(1− λ)θ

β̂1 →p θ

β̂2 →p ρ.

Thus, this “analysis of covariance (ANCOVA)” model is essentially using a consistent estimate for ρ as the
coefficient for the baseline value.

Further statements can be made if we know that our statistical model is an accurate representation of
the data generation mechanism. Because the treatment assignment is binary, the only issue is whether some
linear relationship exists between the baseline and follow-up measurement within each dose group. But if
this does hold, then in the homoscedastic setting (irrespective of the distribution of the errors–including
irrespective of whether the errors are identically distributed) we know by the Gauss-Markov Theorem that

β̂1 is the best linear unbiased estimator (BLUE) for θ.

Sometimes an investigator is extremely insistent on analyzing the change in measurements. They then
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fit a model in which they define

Zi =

{
Y01i − Y00i i ≤ n0
Y11j − Y10j i = n0 + j

Xi =

{
0 i ≤ n0
1 i > n0

Wi =

{
Y00i i ≤ n0
Y10j i = n0 + j

and fit ordinary least squares (OLS) model

E[Zk |Xi,Wi] = α0 +Xiα1 +Wiα2.

This approach provides the exact same inference about the treatment effect, because α0 = β0, α1 = β1,
and α2 = β2 − 1 and OLS estimates α̂0 = β̂0, α̂1 = β̂1, and α̂2 = β̂2 − 1.

6 ANCOVA in the General Heteroscedastic Setting

6.1 Notation

Let Yktj be the SBP measurement in the kth treatment group (k = 1 for experimental treatment, k = 0 for
placebo) at time t (t = 0 for the baseline (pre-randomization) measurement, t = 1 for the end of treatment
measurement) in the jth patient (j = 1, . . . , ni).

Suppose Yktj ∼ (µkt, σ
2
kt), meaning that for a population receiving treatment k, the average mea-

surement pre-randomization would be µk0 with a standard deviation of σk0, and the average measurement
post-treatment would be µk1 with a standard deviation of σk1. We presume that individuals are inde-
pendent, and that repeat measurements made on the same subject in the kth group have correlation ρk.
Thus corr(Yk1j , Yk0j) = ρk, corr(Yktj , Ykt′j′) = 0 for j 6= j′, and corr(Yktj , Yk′t′j′) = 0 for k 6= k′. (In
this heteroscedastic setting, we consider that the treatment can affect both the variability of the follow-up
measurements, as well as the correlation between the baseline and follow-up measurements.)

6.2 Optimal Linear Combination of Measurements

We presume a randomized study, so we have µ10 = µ00 and σ10 = σ00. We are ultimately interested in
estimating θ = µ11 − µ01.

In order to derive general results, we consider the distribution of linear combinations of the form ∆kj =
Yk1j − akYk0j . Using simple properties of expectation and covariances, we find

E [∆kj ] = E [Yk1j − akYk0j ] = µk1 − akµi0
V ar (∆kj) = V ar (Yk1j − akYk0j) = σ2

k1 + a2kσ
2
k0 − 2akρkσk1σk0

so letting

∆k· =
1

nk

nk∑
j=1

∆kj

we can derive moments

E
[
∆k·
]

= µk1 − akµk0

V ar
[
∆k·
]

=
σ2
k1 + a2kσ

2
k0 − 2akρkσk1σk0
nk
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Now, we define θ̂ = ∆1· −∆0·, and find distribution moments

E
[
θ̂
]

= (µ11 − a1µ10)− (µ01 − a0µ00) = θ − (a1µ10 − a0µ00)

= θ − (a1 − a0)µ00

and θ̂ is unbiased for θ for arbitrary µ00 if and only if a1 = a0 = a.

Now we can find distribution variance

V ar
[
θ̂
]

=
σ2
11 + a2σ2

10 − 2aρ1σ11σ10
n1

+
σ2
01 + a2σ2

00 − 2aρ0σ01σ00
n0

=
σ2
11

n1
+
σ2
01

n0
+ a2σ2

00

(
1

n1
+

1

n0

)
− 2aσ00

(
ρ1σ11
n1

+
ρ0σ01
n0

)

By differentiating the above expression with respect to a, we can find the form of θ̂ with minimal variability
as having

a =

(
n0

n0 + n1

)
ρ1
σ11
σ10

+

(
n1

n0 + n1

)
ρ0
σ01
σ00

= (1− λ) ρ1
σ11
σ00

+ λρ0
σ01
σ00

,

where λ = n1/(n0 + n1) reflects the randomization ratio.

Note that this is a weighted average of the slope parameter from a regression of Y11j on Y10j and the
slope parameter from a regression of Y01j on Y00j .

6.3 An Alternative Derivation When Measurements are Normally Distributed

Consider the same heteroscedastic setting as in section 6.2 with σ2
kt and ρk known constants, but now suppose

that it is known that vector (Yk0j , Yk1j) are bivariate normal. We can then write the density for our data as
a function of ~µ = (µ00, µ01, µ11) as

f(~Y ; ~µ) =
1∏
k=0

nk∏
j=1

1

2πσ00σk1
√

(1− ρ2k)
exp

[
− (Yk0j − µ00)2

2σ2
00(1− ρ2k)

+
ρk(Yk0j − µ00)(Yk1j − µk1)

σ00σk1(1− ρ2k)
− (Yk1j − µk1)2

2σ2
k1(1− ρ2k)

]

= g(µ)h(~Y ) exp

[
−

3∑
`=1

c`(~µ)T`(~Y )

]
,
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where the familiar form of an exponential family density is found by expanding the product and grouping
terms, with

g(~µ) =

1∏
k=0

[(
1

2πσ00σk1
√

(1− ρ2k)

)nk

exp

{
− nkµ

2
00

2σ2
00(1− ρ2k)

+
nkρkµk1µ00

σ00σk1(1− ρ2k)
− nkµ

2
k1

2σ2
k1(1− ρ2k)

}]

h(~Y ) = exp

−
1∑
k=0

nk∑
j=1

[
Y 2
k0j

2σ2
00(1− ρ2k)

− ρkYk0jYk1j
σ00σk1(1− ρ2k)

+
Y 2
k1j

2σ2
k1(1− ρ2k)

]
c1(~θ) =

µ00

σ2
00

c2(~θ) =
µ01

σ2
01(1− ρ20)

c3(~θ) =
µ11

σ2
11(1− ρ21)

T1(~Y ) =

1∑
k=0

 1

1− ρ2k

nk∑
j=1

(
Yk0j − ρk

σ00
σk1

Yk1j

)
=

n0
(1− ρ20)

Y 00· −
n0ρ0

(1− ρ20)

σ00
σ01

Y 01· +
n1

(1− ρ21)
Y 10· −

n1ρ1
(1− ρ21)

σ00
σ11

Y 11·

T2(~Y ) =

n0∑
j=1

(
Y01j − ρ0

σ01
σ00

Y00j

)
= n0Y 01· − n0ρ0

σ01
σ00

Y 00·

T3(~Y ) =

n1∑
j=1

(
Y11j − ρ1

σ11
σ00

Y10j

)
= n1Y 11· − n1ρ1

σ11
σ00

Y 10·.

Note that in that exponential family density, ~µ is a three dimensional vector, and the range of ~µ contains
an open rectangle in 3 dimensions. Hence, we know that ~T is a complete sufficient statistic, and any unbiased
estimator of a function of ~µ that is only a function of the complete sufficient statistic is the uniform minimum
variance unbiased estimator.

Thus for unbiased estimator ~̂µ = (µ̂00 µ̂01 µ̂11)
T

with

µ̂00 =
1

n0 + n1

[
T1(~Y ) +

ρ0
1− ρ20

σ00
σ01

T2(~Y ) +
ρ1

1− ρ21
σ00
σ11

T3(~Y )

]
=

n0
n0 + n1

Y 00· +
n1

n0 + n1
Y 10·

µ̂01 =
1

n0
T2(~Y ) + ρ0

σ01
σ00

µ̂00

= Y 01· − ρ0
n1

n0 + n1

σ01
σ00

Y 00· + ρ0
n1

n0 + n1

σ01
σ00

Y 10·

µ̂11 =
1

n1
T3(~Y ) + ρ1

σ11
σ10

µ̂00

= Y 11· + ρ1
n0

n0 + n1

σ11
σ00

Y 00· − ρ1
n0

n0 + n1

σ11
σ00

Y 10·

it is easily seen that this estimator is UMVUE for ~µ. It similarly follows that θ̂ = µ̂11 − µ̂01 is UMVUE for
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θ = µ11 − µ01, with

θ̂ =

(
Y 11· −

(
n1

n0 + n1
ρ0
σ01
σ00

+
n0

n0 + n1
ρ1
σ11
σ00

)
Y 10·

)
−
(
Y 01· −

(
n1

n0 + n1
ρ0
σ01
σ00

+
n0

n0 + n1
ρ1
σ11
σ00

)
Y 00·

)
.

We can thus find that the UMVUE is exactly equal to the optimal choice of a when reducing data on
each subject to a single measurement.

6.4 Use of the OLS ANCOVA model

In the realistic setting in which we do not know ρk or σ2
kt, we could again consider the ANCOVA model.

E[Zi |Xi,Wi] = β0 +Xiβ1 +Wiβ2

with OLS estimates

β̂1 =
1

1− r2XW

[
VXZ
VXX

− VXWVWZ

VXXVWW

]
β̂2 =

1

1− r2XW

[
VWZ

VWW
− VXWVXZ
VXXVWW

]
.

In the heteroscedastic setting in which the randomization ratio is kept constant (so again assuming n1/n→
λ ∈ (0, 1) as n→∞), we have

VXW →p 0,

rXW →p 0,

VXX →p λ(1− λ),

VWW →p σ
2
00,

VZZ →p (1− λ)σ2
01 + λσ2

11 + λ(1− λ)(µ11 − µ01)2,

VWZ → (1− λ)ρ0σ00σ01 + λρ1σ00σ11,

VXZ →p λ(1− λ)(µ11 − µ01) = λ(1− λ)θ,

β̂1 →p θ,

β̂2 →p λρ1
σ11
σ10

+ (1− λ) ρ0
σ01
σ00

.

Note that in this case, the OLS coefficient for the baseline measurement is consistent for the optimal value of
a, when the randomization ratio is 1:1 (i.e., λ = 0.5– a very common setting) or ρ1σ11 = ρ0σ01 (something
that is rather hard to ascertain). Otherwise, the OLS coefficient is not consistent for the optimal value of a.

If we know that our statistical model is an accurate representation of the data generation mechanism, we
know by the Gauss-Markov Theorem that the OLS estimator β̂1 is not the best linear unbiased estimator
(BLUE) for θ unless V ar(Yk1j |Yk0j) is a constant independent of k and j. Otherwise, the BLUE would be
the weighted least squares estimate with each observation weighted by the inverse variance of the follow-up
measurement conditional on its treatment group and its baseline measurement.

As noted above, the optimal linear combination of the baseline and follow-up observations based on a
is of a form that would suggest performing linear regressions of the follow-up observations on the baseline
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observations within each group, and then using the estimated coefficients for the baseline values to adjust
the follow-up measurements. That is, we could fit linear regression models

E[Yk1j |Yk0j ] = γk0 + Yk0jγk1,

and then define variables

Z∗i = Zi −
((

n0
n0 + n1

)
γ̂11 +

(
n1

n0 + n1

)
γ̂01

)
Wi,

and then regress Z∗i on Xi. It should be noted, however, that the Z∗i are now (very slightly) correlated
within treatment groups, and thus the inference obtained from classical OLS on that simple linear regression
model would not be entirely correct.
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