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Sample Size Formula for a Normally Distributed Statistic

Suppose a statistic S is known to be normally distributed with mean ® and variance V/n.
A hypothesis test having one-sided type I error o/2 might be based on a critical function
which rejects Hy: @ < oy in favor of alternative hypothesis H;: ® > wy when

z :\/;S—Va)o >z 4, =0 (1-a/2), where ®(z)= J'%ef"z/zdu.
V3

The power function for this hypothesis test is then
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This power function can be used to
e compute the power  with which the hypothesis test rejects a specific alternative
®; > ®y when the sample size is at some given value of #;
e compute the sample size for which a hypothesis test would have prescribed power
B to detect a specific “design” alternative m; > wy; or
e compute the alternative ®; > ®y which is rejected with prescribed power 3 when
performing the hypothesis test with some given sample size n.

For instance, when desiring to compute a sample size such that the hypothesis test has
power 3, we merely want
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which then suggests
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Another approach to sample size estimation is based on the precision with which some
parameter can be estimated. For instance, a 100(1-a)% confidence interval for ® might be

computed as
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If we want the width of the confidence interval to be ®; - @y (so the CI will discriminate
between the null and alternative hypotheses), then we use sample size formula
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which corresponds to the same sample size formula as derived from the hypothesis test,
providing we choose power B =1 — o/2 (my religion).
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General Sample Size Formula for 1-sample, 2-sample, and Regression Settings

The S+SeqTrial Technical Overview describes a general sample size formula which can
be used in the data analysis models most commonly used in the analysis of clinical trial
data. (The notation in this document differs slightly from the notation used in the
technical overview.) In these models, we let 0 represent the measure of treatment effect,
which is most often a contrast (difference or ratio) of some within group summary
measure p computed independently for each treatment arm. Statistical analysis can
usually be based on an estimate of the treatment effect 8. Most often, either the estimate
of 0 or the logarithmic transformation of 6 are approximately normally distributed in a
fixed sample study (i.e., one without interim analyses). We thus let ® = g(0) be the
transformed treatment effect measure which is commonly estimated with an
approximately normally distributed estimate. The “link” function g( ) is typically the
identity function (so @ = 0) or the logarithmic transformation (so ® = log (9)).

We thus assume that the estimate of ® is approximately normally distributed with
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where V is the (average) variability contributed to the estimate by a single observation,
and n is the sample size. In general, V' can be a function of the within group summary
measures [, as well as other “nuisance” parameters that are independent of .

Suppose we are interested in discriminating between a null hypothesis Hy: ® < oy and an
alternative hypothesis H;: ® > ®; in a hypothesis test having one-sided type I error o/2
and statistical power . When the above approximate distribution holds, sample size
computations are most often effected using
2
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where A = o; — g and g is a “standardized alternative”, which in a fixed sample study
(i.e., one without interim analyses) is Oup = Z7-02 1 5.

The same general formula can be used in a group sequential test, providing the estimate
of treatment effect can be viewed as a weighted sum of uncorrelated, approximately
normally distributed statistics computed on the groups accrued between analyses. This is
often referred to as “independent increment structure”, and this holds in a wide variety of
common clinical trial settings. In these group sequential settings, the “standardized
alternative” must be computed using recursive numerical integration of convolutions of
densities. (S+SeqTrial will do this for us.)

Use of the General Formula in Common I-sample Analysis Models

1. Testing means of continuous distributions: Y; ~ (1, o°), i=1, ..., n
e O=p
e =0

o V=0



2. Testing geometric means of continuous distributions: log Yi~ (u, o°), i= 1, ..., n

e O=¢"
e w=log(0)
o V=0

3. Testing proportions of Bernoulli distributions: Y;~B (L,u), i= 1, ..., n

e O=p
e =0
* V=p(lp

Use of the General Formula in Common 2 Independent Sample Analysis Models

1. Testing means of continuous distributions: Y ~ (t O'kZ), i=1,...,mp k=01
e n=m;+my
e Randomization ratio » = m; /my
o O=u—w (difference of means)
e =20

o V=0+l)[o’l/r+of ]

2. Testing geometric means of continuous distributions: log Y ~ (g 1), i= 1, ...,
my,; k= 0,1
o n=m;+m
e Randomization ratio » = m; /my
o O=exp(u)/exp(u) =exp(ur—o) (ratio of geometric means)
e w=log(0)
o V=0+l)[o’/r+of ]

3. Testing proportions of Bernoulli distributions: Yy ~B (1, u), i= 1, ..., my ; k=

0,1
a. n=m;+m
b. Randomization ratio » =m; /my
c. O0=u;—w (difference of proportions)
d o=0
e. V=@+D)[pi(1-p1)/r+po(l—po) ] (under the alternative)

4. Testing odds of Bernoulli distributions: Yy ~B (1, px), i= 1, ..., mi,; k= 0,1

a. n=m;+ my

b. Randomization ratio » =m; /my

C. OddS,Ltk:pk/(l—pk)

d. 0=u;/po (odds ratio)
e. w=log(0)

f.

V=@+1)[1/(rpi(l-p1))+1/(po(l—po))] (under alternative)



5. Testing hazard ratios in survival distributions: Yy ~ Sk(t ) , i= 1, ..., my,; k= 0,1
e 1 = number of observed events in both groups combined

e Randomization ratio » = m; /my

e Hazard function /() =-d (log Si(t) )

o O0=hyut)/ hot) (constant ratio of hazard functions)
e w=log(0)

o V=mwr+)[1/r+1] (under the null)

Use of the General Formula in When Comparing Means with Correlated Observations

1. (“Repeated Measures”): Suppose the kth treatment group (k= 0, 1) has my,
independent subjects, each of whom have J measurements, and subjects in
different groups are independent

o Yii~(u o), k=0,1,i=1, ..,my;j=1, .., J

corr(Y;, Yivp)=p ifk=k’, i=i’, j#’

corr(Yu, Yierp)=11fk=k’, i=i’, j=j’

corr(Y, Yiiy)=p if k#k’ or i#i’

Randomization ratio » = m; /my

0= —po (difference of means)

o=0

V=+1){ o [1+(J-Dp]/(J r) + oF [1+(J-1)p]/T }

2. (“Crossover”): Suppose m independent pairs of subjects are randomized such that
one member of each pair is in treatment group 0 and one is in treatment group 1.
° Yki~ (,uk, O'kz), k= 0,], = ], e, M
o corr(Yu, Yivi)=p it kk’, i=i’
corr(Yu, Yi)=1 1t k=k’, i=i’

o corr(Yu, Yii)=pifiti’

o O=u—w (difference of means)
e =20

[}

V= {012 + 0'02—2,0000'1 }

Use of the General Formula in Common Regression Analysis Models

1. Linear regression (means): (Yi|Xi=x;)~ (Po+ p1xi, 0°), i=1, ... n
o 0=FE(Y|X=xt1)-E(Y|X=x)=p (linear contrast of means)
e =0
o V=20/Var(x)

2. Linear regression on log transformed data (geometric means): (log Yi | X; = x; ) ~
(Bot+ P1 xi, 02), i=1, ..,n
o 0=GM(Y|X=x+1)/GM(Y|X=x)=exp(fi)
e o=log(0)
o V=0/Var(x)



3. Logistic regression (odds): Y ~B (1, px), i= 1, ..., mi; k= 0,1

a. n=m;+ my

b. Randomization ratio » =m; /my

C. OddS,Ltk:pk/(l—pk)

d. 0=u;/ o (odds ratio)
e. w=log(0)

f. V=1/[p(—-p)Var(x)] (using an average value for p)

4. Proportional hazards regression (hazard ratios): Yi~ St),i=1, ... n
e 1 = number of observed events in both groups combined

o Hazard hyt|Xi=x;)=-d(logSi(t| Xi=x;)) = ho(t) exp (1 x:)
o O=nt|X=x+1) /ht|X=x)=exp(f;)

e w=1log(0)

o V=I/Var(x) (under the null)

Sample Size Formula for K-sample Setting

The S+SeqTrial Technical Overview also provides a sample size formula appropriate
when comparing means or geometric means across K independent samples in a fixed
sample (no interim analyses) setting. In this setting, we again use some consider some
within group summary measure y computed independently for the Ath treatment arm,
k=1,...,K. The null and alternative hypotheses are classically stated as Hy: u; =pu>= ... =
ux and H;: p; = p; for some i,j. Testing of the hypotheses is generally based on the
variance of the within group summary measures. That is, the parameter measuring
treatment effect is 0 = Var((u;, ..., ux )). When all groups have equal summary
measures, this variance is 0. When the alternative hypothesis is true, the variance across
the group summary measures is nonzero.

The exact formula and code used to compute sample sizes in the K-sample setting is
given in the technical overview.

Using S+SeqgTrial to Compute Number of Events for Proportional Hazards Models

S+SeqTrial provides explicit functions for the computation of sample sizes in the two
sample setting for both fixed sample and group sequential trials using the proportional
hazards model. Although no explicit facility is provided for proportional hazards
regression with a continuous predictor, examination of the results given above for the
geometric mean and hazard ratio regressions reveals a similarity of the formulas. In fact,
we merely need to use the geometric mean model with a standard deviation of 1 in order
to estimate the number of observed events needed for the proportional hazards model.

This also suggests that when planning to use the K-sample logrank statistic, we can

merely use the geometric mean model in order to find the number of events needed to
provide desired power. In this case, we can use the command line functions (there is a
bug in the dialog) to provide a vector of hazard ratios across the K groups. All hazard



ratios should be specified relative to the control group, and it will be necessary to include
a hazard ratio of 1 reflecting the comparison of the control group to itself.

Computing the Number of Subjects to Accrue to a Survival Study

The above sample size formulas for proportional hazards models provide the number of
events needed, rather than the number of subjects. Several approximate approaches are
used to determine the number of subjects to accrue:

1. Assume that subjects are accrued uniformly over, say, (0,a), and that data analysis
will occur at time t+a. Further assume exponential survival distribution (a
constant hazard) in each group. We can then derive the probability of a subject
having an event by the time of analysis, and by dividing the number of events by
that probability, derive the number of subjects to accrue. (see S+SeqTrial
Technical Overview).

2. Under the same assumptions, use the rate of observed events and the average time
of follow-up in a Poisson type model.

Sample Size Recalculation

At the time of study design, it is often the case that the value of V" is not precisely known,
but is instead estimated. It is then sometimes planned that the results of an interim
analysis will be used to provide a more precise estimate of the sample size requirements.
As noted above, it is often the case that the exact value of V is unknown, in which case
the interpretation of our sample size formula needs to be reconsidered. If the sample size
1s held constant at the value obtained with an estimate of V, we can not know the exact
value of A in absolute terms. However, we can, for instance, know that our test
comparing means does provide the desired power to detect an alternative A/\'V measured
in units of standard deviations of differences between a pair of observations. In this
setting of an unmodified sample size, when evaluating the clinical trial design, we need to
either express the power curve with respect to this standardized alternative, or to perform
a sensitivity analysis of the operating characteristics under different presumptions of the
measurement variability.

It is also statistically valid to re-estimate the sample size based on the observed variability
at an interim analysis. In this approach, the clinical trial design does not fix the maximal
sample size, but instead fixes the maximal statistical information N/V. In this setting, the
statistical inference is made conditional on the observed variability, and this does not bias
inference about the treatment effect so long as the estimates of V are not correlated with
the estimate of treatment effect. In some statistical models, such as the comparison of
continuous means and the proportional hazards model, the standard estimate of variability
satisfies this criterion. In tests of binomial proportions, however, it is important that the
estimate be based on an estimate of the pooled event rate. This issue is addressed again in
section 4.

Suppose a statistic S is known to be normally distributed with mean o and variance V/n.
A hypothesis test having one-sided type I error o/2 might be based on a critical function



