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Abstract

Information Growth in Longitudinal Clinical Trials

Abigail B. Shoben

Chair of the Supervisory Committee:
Professor Scott S. Emerson

Biostatistics

In group sequential trials, interim analyses are performed for ethical and financial considera-

tions. In order to perform such analyses, estimates of the statistical information at the time

of the interim analysis relative to the amount of statistical information at the end of the trial

are needed. Longitudinal trials where the primary outcome is a change over time (slope)

present special problems for estimates of the information growth. We consider potential

difficulties due to (a) failing to estimate correctly the information in a longitudinal setting,

(b) heteroscedasticity over the course of the trial, and (c) correlation of measurements on

the same individual. In some longitudinal trials these issues result in the covariance of the

interim and final statistics not having the assumed form of independent increments due to

using an inefficient statistic. This is of a practical concern due to reliance of most sequential

software on the independent increment assumption.

We demonstrate that dramatic misestimation of the information at interim analysis

times can lead to inflated type I error rates and loss of power for a specific alternative.

The amount of heteroscedasticity also impacts the information at interim analyses, which

implies that the information growth over time will be different for different alternatives

in the setting of a mean-variance relationship. We found that this relationship can cause

difficulties in extreme mean-variance settings, but that adjusting for the observed true

information growth at the end of the study is sufficient to maintain type I error rates in

most realistic circumstances. With correlated data, we illustrate circumstances in which





the generalized estimating equation (GEE) method can lead to nonmontonic information

growth in longitudinal trials. We describe cases in which such nonmontonicity is possible

and discuss possible options for such settings.

We also demonstrate situations with heteroscedastic and correlated data that lead to

violations of the independent increment assumption for the covariance of interim and final

statistics in a group sequential trial. Specifically, we give circumstances in which the lack

of independent increments may cause departures from the nominal type I error rate. We

illustrate that in most common circumstances, existing group sequential methodology can be

used despite departures from the independent increment assumption, and we give guidelines

for when such departures may be problematic.
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Chapter 1

INTRODUCTION

The purpose of this introduction is to provide a brief overview of existing methodology

in sequential clinical trials and to provide motivation for this work in the specific case of

longitudinal clinical trials. Further details on existing methodology are found in background

chapters on group sequential trials and longitudinal data.

1.1 Why Clinical Trials?

Evidence-based medicine requires that treatment options be evaluated in the most rigorous

manner possible. Usually this approach requires a series of clinical trials, in different phases.

Phase 1 tests for toxicity in human subjects. Phase 2 investigates dose-response and proof

of concept sufficient to continue to a phase 3 study. Phase 3 tests for efficacy of a treatment,

usually with a randomized design. Randomization allows for an unconfounded comparison

of two or more treatment groups. Assuming that the trial is well-planned and well-executed,

this randomization provides the strongest evidence with which to compare the groups and

ultimately decide whether a treatment should be approved.

Ethical and validity concerns govern regulatory agencies that decide if a treatment should

be approved. These regulatory agencies in most countries, including the United States,

require that all statistical analyses for the trials done on humans are prespecified to ensure

that correct statistical inference can be made. For instance, a decision to compare geometric

mean weight loss rather than arithmetic mean weight loss prior to data collection is perfectly

acceptable depending on the scientific circumstance, but deciding to switch to the geometric

mean after observing some data is not. The prespecified statistical analysis plan must ensure

that the overall type I error rate of the study is maintained regardless of what happens in

the trial.
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1.2 Conduct of Clinical Trials

Concepts of time in a sequential clinical trial are of particular importance in the setting of

longitudinal trials. In actual calendar time, a clinical trial has several stages, which may

overlap. There is a stage before actual recruitment of patients for the study, during which

planning for the study and training of the study coordinators may occur. Once the study

is ready to begin, recruitment of patients for the study and randomization take place. The

time during which new patients are being actively recruited and randomized for the study is

known as the accrual period. This period could be very brief if participants can be recruited

from everyone with a prevalent disease, such as testing pain medication in arthritis. In such

a case, many patients could be recruited and started on the randomized treatment quickly.

In contrast, accrual could be lengthy, as might be the case if the trial is being conducted

in a rare disease and only incident cases can be included. Accrual patterns can also be

influenced by factors that could change over the course of the study. For example, in a

multi-center study, all sites may not start recruiting at the same calendar time, so accrual

could be slow at the start of the trial and then increase. The rate of successful recruitment

of eligible patients may also change over time. For example, study coordinators may become

better at identifying patients who are eligible for the study and/or ensuring that patients

have all the information to make an informed decision about whether to participate.

Measuring the outcomes of patients enrolled in the trial is the next stage, and this

stage may be overlapping with the accrual portion, as outcomes for some patients may

be (and likely are) measured while other patients are being accrued. There may be a

large amount of overlap between the accrual and the measuring of the outcomes, or most

outcome measurements may be obtained after accrual is finished, such as in long-term

survival studies. Once the last outcome has been measured, the clinical trial may have an

end stage in which patients are followed for additional adverse events, but this time period

is not relevant for our purposes. We are concerned with the total calendar time from the

start of accrual to when the last outcome measurement is obtained.

For the purpose of this dissertation, we will be interested in longitudinal clinical trials

in which the primary interest is in the rate of change over time (a slope). For the sake of
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clarity, we use “calendar time” as defined above (starting at the time the first participant

is accrued and ending when the last measurement has been made). We use “study time” to

denote the time from randomization on each participant.

1.3 Monitoring a Clinical Trial

Clinical trials are conducted in human volunteers and thus ethical concerns are of paramount

importance. These ethical concerns motivate the use of interim analyses and sequential

monitoring of data from a clinical trial in order to prevent undue harm to test subjects or

to expedite delivery of effective treatments. Additionally, interim analyses can halt trials

once clinically important results can be ruled out, which can save monetary and scientific

resources.

Special statistical techniques are needed to conduct interim analyses of a trial because

test statistics from the interim analyses are based on varying amounts of information and

are correlated with each other. Group sequential methods to account for this correlation

have been developed exactly with the following assumptions (Whitehead, 1997; Jennison

and Turnbull, 2000):

• The scientific interest lies in the mean of the data or the mean of a transformation of

the data.

• The primary outcome is measured once (and only once) on each individual in the study.

This assumption requires that outcome measurements will be available on participants

after a fixed amount of time from randomization (e.g. cholesterol measurement 3

months after starting treatment) and that additional measurements on individuals

already measured will not be made if the study is continued.

• The contributions of measured outcomes to the test statistic are independent of each

other.

• The outcome measurements have a constant variance (homoscedastic).

• The variance of the outcome measurements is known.
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• The (possibly transformed) outcome measurements are normally distributed.

Existing statistical methods for group sequential trials have been developed and explored

under assumptions all of the above conditions hold. Further, in some cases, it has been

shown that some of these assumptions can be relaxed and that the existing methodology

will still work well, even though the assumptions are not met exactly. Specifically, existing

techniques permit relaxation of the following assumptions:

• Normally Distributed Data: Provided the sample size of a trial is large enough

at each interim analysis for the Central Limit Theorem to hold, the assumption of

normally distributed data is satisfied by the asymptotic normality of the statistic,

even without normally distributed outcome data.

• Known Variance of the Outcome Measurements: If the variance can be con-

sistently estimated from the data, using the estimate from the data can work as an

approximate value in the existing methods given a large enough sample size.

• Constant Variance of the Outcome Measurements: This assumption can be

relaxed in two circumstances. (1) If there is a predictor-variance relationship (e.g.

measurements are becoming more variable as study time increases, or there is a differ-

ence in the variance by treatment group), but the design is completely balanced at all

interim analyses on the predictor that is associated with the changing variance, then

there is no problem due to the heteroscedasticity. (2) If the non-constant variance is

due to a mean-variance relationship but the sample size is sufficiently large, changes

in the variance due to a changing alternative hypothesis are slight due to the large

sample size in which case the assumption of homoscedasticity is reasonable. Further,

the type I error rate will be maintained under the strong null regardless of sample size

with an assumed mean-variance relationship.

• Independent Data: Existing group sequential methods have been shown to work

with dependent data, provided they are analyzed with the efficient statistic for the
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situation. In such circumstances, the dependent data are combined into a statistic in

such a way (through weighting) to attain properties of independent data.

• Single Outcomes: One common case in which outcomes are measured repeatedly

in time but that existing group sequential methodology can be used is survival data.

The use of proportional hazards in survival models incorporates a repeated outcome

in that individuals in the study may experience events at different times; however, if

the proportional hazards assumption holds, existing techniques may be used.

Each of these assumptions is important to conduct interim analyses correctly. In order

to perform interim analyses in a clinical trial using the existing statistical techniques, the

variability of the statistic must be estimated at each interim analysis. The variability of the

statistic is generally the inverse of Fisher’s Information; hence we refer to the inverse of the

variance of the statistic as the “information.” In general, the variability of the statistic will

decrease (the information will increase) as more outcome measurements are obtained. The

rate at which statistical information increases over the course of a trial (the “information

growth”) will depend on both the accrual pattern and the amount of additional statistical

information obtained from newly measured outcomes. Existing statistical techniques for

sequential clinical trials rely on being able to estimate the fraction of total information

present at each interim analysis time.

1.4 Our Focus and Motivation

The information growth in longitudinal clinical trials is the primary focus of this dissertation.

In particular, we are interested in the ways that heteroscedastic and correlated data affect

the information in a sequential clinical trial.

These issues can be motivated by considering a clinical trial designed to study a rate

of change in longitudinal Poisson counts, such as monitoring the rate of decline of skin

lesions over time. Such a trial would violate the assumptions needed for standard sequential

monitoring of a longitudinal trial. Specifically, correctly measuring the information growth

in this scenario may be difficult due to: (a) repeated measurements, (b) correlation of



6

the measured outcomes, and (c) heteroscedasticity due to a mean-variance relationship.

Further, some accepted statististical techniques may not be the efficient statistic in this

setting and thus (d) the use of the inefficient statistic may cause additional difficulties. For

the purposes of this work, we are interested in the population-level effect of a treatment

and thus we will be focused on methods that allow for marginal inference on the slope

parameter. In particular, we explore the use of least squares slope (an inefficient statistic)

with correlated data.

In order to explore these issues fully and to examine the consequences of violating each

assumption in turn, we will focus on a linear model of data with a possible mean-variance

relationship and possible correlation between measurements on the same subject. Letting

i denote the randomized treatment group, we are interested in a simple regression model

such that for a particular study time (after randomization) x, the mean in treatment i is

given by:

µix =β0i + β1ix (1.1)

For our purposes, we will assume that at the planned end of the study, all individuals

in all treatment groups will have been observed at identical study times. Thus the vector

of study observation times at the end of the study, x, is constant across treatment groups

and individuals. Thus, the vector mean of observations at all study times x is given by:

µi =β0i1 + β1ix

µi =Xβi

where X is the design matrix that in our case combines the vectors 1 and x.

Then, letting j denote a specific individual, we assume that the measured vector of

outcomes at study times x, Yij , is distributed as:

Yij ∼(µi, σ
2
i V (µi)) (1.2)

The matrix V (µi) will allow for both correlation between measurements on the same

individual and for a mean-variance relationship due to the dependence on the mean vector
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µi, though we will also consider a predictor-variance relationship with this model. For

purposes of simulation, we will assume that these Yij are multivariate normal.

We will first explore the case of independent data, as might be the case if a clinical

trial was conducted to study tumor growth in rats. In such a case, randomized rats may

be given cancer at a specific starting time but then the outcome measurements of tumor

size are obtained at different study times on different rats, as the rat must be sacrificed to

measure the tumor size.

Within the setting of independent data, we first explore consequences of violating the

assumption of being able to estimate consistently a constant variance in the setting of model

misspecification, where the estimate of the variance may not be constant over the course

of the study (chapter 4). We then explore consequences of violating the assumption of

homoscedasticity with heteroscedasticity due to a predictor-variance relationship (chapter

5) and due to a known mean-variance relationship (chapter 6). In both settings we exam-

ine the impact of proceeding naively with existing group sequential methods and provide

recommendations for design and inference of trials in which heteroscedasticity may be a

concern.

After exploring independent linear data, we explore correlated linear data to examine

consequences of violating the assumption of independent data in chapter 7. As before, we

examine the impact of proceeding naively with existing methods and provide recommenda-

tions for design and inference in trials with longitudinal correlated data. In this setting we

explore consequences of a known mean-variance relationship as well.

Finally, we provide recommendations for future studies and evaluate our recommenda-

tions with a specific example in chapter 8.

There are important issues with longitudinal clinical trials that are beyond the scope of

this work. Specifically, although we consider the case of model misspecification to examine

consequences of inconsistently estimated variance, we do not consider further cases in which

the model is not correctly specified (either the mean or the mean-variance relationship). If

the mean model is not correctly specified (i.e. the data are not perfectly linear), then each

of the interim analyses would be estimating a linear contrast over a different period of

study time. Estimates from interim analyses would thus be estimating different scientific
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quantities and there are important scientific considerations about interim analyses in this

setting that are beyond the scope of this work. If the effect does differ over time, such as

can happen with early and late effects in survival data, this has important implications both

for the scientific and statistical considerations of the trial. The situation in which the effect

is different early in the trial compared to later with survival data has been investigated by

Gillen and Emerson (2005) and Hanley (2005). If the model is correctly specified and the

data are linear, then the contrast estimated at every interim analysis is the same slope that

would be estimated at the final analysis. This situation is the one we consider for this work.

Further, although the scope of this work does not include nonlinear models, as might be

used in the case of longitudinal Poisson count data, the results about information growth

would likely generalize on the transformed scale to such a setting. Additionally, longitudinal

studies in the real world may have observed observation times for each individual that are

random and not fixed at the same time for every individual, including possible missing

data at some expected measurement times. Theses issues are also beyond the scope of this

dissertation.
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Chapter 2

BACKGROUND – GROUP SEQUENTIAL TRIALS

The need for interim analyses in clinical trials is driven by ethical and financial concerns.

We want to be able to stop trials early for both positive and negative reasons. If the new

treatment is highly advantageous, we want to stop the trial early to expedite delivery of

the effective treatment to eligible patients, including those in the control arm of the trial.

If the new treatment is suggestive of harm rather than benefit, we want to stop the trial

early to prevent harm to patients on the treatment arm of the trial. Further, if the new

treatment is simply ineffective – there is no scientifically important difference between it

and the control – i.e. there are ethical and financial gains in stopping these trials early as

well. If such futile trials are stopped early, then money and resources can be reallocated to

researching additional treatments.

These ethical reasons for stopping a trial early govern the conduct of an interim analysis

of a clinical trial. We describe the process in the context of a one-sided comparison for

a new treatment to placebo (or standard of care). At each interim analysis, a summary

measurement (the test statistic) of the data is calculated. This test statistic is then compared

to predetermined critical values (boundaries) for this interim analysis. If the test statistic

is large (indicating a highly effective treatment) the trial is stopped for efficacy. If the test

statistic is small (indicating an ineffective treatment) the trial is stopped for futility. If the

test statistic is between the two critical values (indicating neither large efficacy nor clear

futility), the trial is continued to the next analysis.

These interim analyses require additional techniques to account for the correlation be-

tween the test statistics at each interim analysis. At the first interim analysis, a “standard”

statistical analysis could be performed, and the test would be expected to have correct

type I error and power, however if subsequent tests were also completed using standard

techniques, the cumulative effect of repeated significance tests would lead to inflated type I
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error, as quantified by Armitage et al. (1969).

Possible solutions to this problem were hinted at by Armitage et al. (1969), who proposed

performing repeated significance tests at lower values that would allow the overall level of

the test to remain fixed. Pocock (1977) and O’Brien and Fleming (1979) each subsequently

examined other stopping boundaries for clinical trials that would also protect against inflated

type I error. Many other group sequential stopping boundary designs have been suggested;

these designs vary in terms of the likelihood of early stopping, which in turn has effects on

average sample size and power.

We describe here the existing methodology for group sequential trials that relies on

the assumptions discussed in the introduction, specifically normally distributed test statis-

tics, known variance, constant variance, independent data, and single measurements of the

primary outcome. Note that in a randomized study it will be sufficient to consider the

one-sample model as the results can be generalized to a two-sample case when there is no

confounding between the groups. The primary consideration is the joint distribution of the

test statistic at all interim analyses.

2.1 Notation

In a sequential design, analyses occur at times tj , where j indicates the number of the

analysis to be performed (j = 1, ..., J). These analysis times, tj can be specified and

considered in either calendar time or statistical information time. The final analysis, at

time tJ occurs at the end of the study. The statistic of interest at each of the analysis times

will be subscripted to indicate the number of the analysis for this statistic.

2.1.1 Parameter Scales

For a generic trial, let Yi be the response for the ith sample unit and let σ2 be the variability

of each sampling unit, and let Nj indicate the number of units obtained prior to the jth

analysis time. Let µ be the unknown population treatment response and let µ0 be the value

of this parameter under the null hypothesis. There are several choices of scale for a statistic
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computed at the jith analysis:

Partial Sum Sj =
Nj∑
i=1

Yi

Sample Mean X̄j =
Sj
Nj

Z-Statistic Zj =
√
Nj

(Ȳj − µ0)
σ

fixed sample P value Pj = 1− Φ(Zj) = 1−
∫ Zj

−∞

1√
2π
e−u

2/2 du

It is possible to transform statistics on one scale to another with knowledge of Nj , σ, and

µ0. We note that because these are all monotonic transformations, such transformations

preserve order so we are free to choose scales that are computationally and/or scientifically

convenient as needed.

2.1.2 Boundaries

The boundaries at an interim analysis time are critical values used for testing if a trial

should be stopped early. For the sake of convenience, we consider a scientific test of a

greater alternative, such that larger values of the test statistic would be considered a more

favorable scientific result. In this setting, the upper boundary corresponds to rejecting the

null hypothesis of H0 : µ ≤ µ0. Following the notation of Kittelson and Emerson (1999),

this boundary is denoted by the letter d, with dj indicating the value of this boundary at

analysis time tj . If the test statistic, i.e. Sj , at this analysis is greater than dj , the trial is

stopped for efficacy of the treatment (due to rejecting the null hypothesis).

As noted earlier, it may be prudent for financial and ethical reasons to stop early not

only for efficacy, but also for futility. Thus, in a setting in which only a one-sided alternative

is of interest, a second boundary could still be added to allow for stopping early for futility.

In the example of a one-sided test of a greater alternative, this futility boundary would be

the lower boundary, denoted by the letter a. If the test statistic, Sj is less than aj , the trial

is stopped early for futility, rejecting the possibility that µ ≥ µa.

The continuation region of a trial (values for which the trial is not stopped at the interim

analysis) is denoted Cj . In the case of the efficacy and futility for a one-sided hypothesis,



12

this continuation region is just (aj , dj). Note that the restriction that aJ = dJ guarantees

stopping at the final analysis.

A more detailed description of the choice of boundaries that are commonly used in

clinical trials and the implications of such choices is deferred to section 2.3. For now, we

consider boundaries on the partial sum scale only, and suppress the notation indicating the

dependence of the boundary on the choice of scale (e.g. CSj = Cj).

2.2 Sampling Density and Independent Increments in Sequential Analyses

In order to maintain the type I error rate in a group sequential clinical trial, we need to

ensure that

P (
J⋃
j=1

Sj > dj |µ = µ0) = α

To calculate this probability (as well as other quantities of interest), we need to know the

sampling density of the test statistic.

In a fixed sample test (J = 1), the sampling density of the test statistic is given by

standard statistical theory; under sufficient conditions for the central limit theorem (which

we assume throughout this dissertation), a test statistic will have a normal density. For

ease of notation, we consider the partial sum statistic and note that for a fixed sample test,

its density is:

f(s;µ) =
1√
nσ

φ

(
s− nµ√
nσ

)
(2.1)

where φ(x) = e−x
2/2/
√

2π, the density for the standard normal distribution. In this case,

P (SJ > dJ |µ = µ0) is given by integrating the density in equation 2.1 from dJ to ∞ when

µ = µ0.

In sequential analyses, the test statistic is now two dimensional, as the sampling density

will depend on both the value of the statistic (S on the partial sum scale) and the analysis

time at which this statistic was observed (denoted by M). The density of the test statistic

at the first analysis time will be identical to that in the fixed sample setting (equation 2.1),

and this fact will give the density of the test statistic if the trial is stopped at the first

analysis. The density of the statistic at the second and other later analyses will be more
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complicated as it will depend on the joint density of the test statistics and the boundaries

used at the prior analyses.

P (
J⋃
j=1

Sj > dj |µ = µ0) =
∫
B
f(s1, s2, ..., sJ |µ0) ds (2.2)

where B indicates that the density should be integrated over the stopping region for each

statistic (analogous to integrating from d1 to ∞ in the fixed sample case) and that the

integration should take place only at later analysis times for the continuation regions of

all prior analyses. For a single boundary (no stopping for futility), this restriction would

correspond to B = {S1 > d1 ∪ (S1 ≤ d1 & S2 > d2) ∪ (S1 ≤ dq & S2 ≤ d2 & S3 > d3) ∪ ...}.

Assuming that the central limit theorem conditions hold, the partial sums at each interim

analysis, Sj will be asymptotically distributed multivariate normal with covariance matrix Σ.

This general density is computationally quite challenging. However, if the contribution of the

new data accrued between the time of the current and the previous analysis is independent

of the previously acquired data, these data are said to have an independent increment

structure and the above formula simplifies into a more manageable form. Fortunately,

independent increments will be true in many situations, including the case in which all

outcome measurements are independent of each other.

On the partial sum scale, independent increments implies that Sk − Sj = Sk−j is inde-

pendent of Sj . This implication leads to, for k > j:

Cov(Sj , Sk) =Cov(Sj , Sj + Sk−j)

=Cov(Sj , Sj) + Cov(Sj , Sk−j)

=V ar(Sj) + 0
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On the sample mean scale, it leads to:

Cov(X̄j , X̄k) =Cov(
1
Nj

Sj ,
1
Nk

Sk)

=
1

NjNk
Cov(Sj , Sk)

=
1
Nk

V ar

(
Sj
Nj

)
=V ar(X̄k)

In the group sequential setting, independent increments lead to much easier numerical

integration of the sampling density in equation 2.2. It allows the integrations to be done

using approximations to the standard normal cumulative distribution function (Armitage

et al., 1969). This fact leads to their use in all standard statistical packages for group

sequential designs. Fortunately, most common statistics based on the mean of independent

data lead to independent increments.

Assuming independent increments, the density of the test statistic at a specific analysis

times is formally recursively defined as follows.

p(m, s;µ) =


f(m, s;µ) x /∈ Csm

0 else

where f(m, s;µ) is defined as:

f(1, s;µ) =
1
√
n1σ

φ

(
s− n1µ√
n1σ

)
(2.3)

f(j, s;µ) =
∫
Cs(j−1)

1
√
nkσ

φ

(
s− nkµ√
nkσ

)
f(k − 1, u;µ) du j = 2, ...,m

where again φ(x) = e−x
2/2/
√

2π, the density for the standard normal distribution, and nj

is the size of the group accrued between successive analysis times (so nj = Nj − Nj−1).

We note that these densities are expressed most easily on the partial sum scale, but that

conversions between the partial sum scale and other scales can be made as needed.

In a more general setting, the effect of interest is a parameter from an efficient score

statistic. In these scenarios, the efficient score function, evaluated at θ0, U(θ0), is asymp-

totically normally distributed with mean (θ− θ0)I(θ) and variance I(θ). From this setting,
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we can implement all of the above with µ = (θ − θ0), σ2 = 1, and N = I(θ) (Whitehead,

1997; Emerson, 2000). Scharfstein et al. (1997) and Jennison and Turnbull (1997) noted

that using the efficient statistic will always lead to independent increments. Scharfstein

et al. noted further that inefficient statistics do not necessarily preclude independent in-

crements. They observed that the Mantel-Haenszel estimate of the log hazard ratio in a

two-sample proportional hazards survival model has an independent increment structure

but is not efficient.

The use of the statistical information as the variance leads to “information based” mon-

itoring of clinical trials, where the fractional amount of information present at an interim

analysis relative to the final amount, Πj = Ij(θ)/IJ(θ), is paramount. This approach means

that if the amount of relative information at each interim analysis can be correctly speci-

fied, and if the other assumptions hold, then existing group sequential methods will work.

If the information growth is not correctly specified, these procedures may not lead to valid

inference.

In many clinical trials, estimating the information growth for a given sequence of anal-

ysis times is straightforward. For example, in a setting with a single measurement per

person and in which the parameter of interest is a function of the population mean with

no mean-variance relationship, the information growth is proportional to the number of

measurements: Πj = Nj/NJ . In a study of survival outcomes using proportional hazards,

the information growth is proportional to the number of events: Πj = Dj/DJ .

2.3 Stopping Rules

The sampling density described above is directly influenced by the choice of boundaries.

Indeed, the defining features of a particular group sequential design are the stopping rules

to be implemented at each interim analysis. These stopping rules dictate whether or not

a trial should continue to the next analysis, and therefore scientific and statistical consid-

erations must be taken into account when designing a group sequential trial. Stopping a

trial eliminates future data on potential adverse events and further statistical precision with

which to estimate the treatment effect. For an efficacious drug, the estimated treatment

effect is of critical importance to the scientific community, and thus the estimated treatment



16

effect at early stopping times must be carefully considered.

We noted earlier that the upper boundary is denoted by the letter d and the lower

boundary by the letter a. For a one-sided alternative, only one of these boundaries is

needed, though both may be used to allow early stopping for both efficacy and futility.

In some circumstances, clinical trials are designed to test for a two-sided alternative, such

as a case in which two treatments are commonly used and the trial is used to determine

if one is superior to the other. In this scenario, as in a fixed sample test, there will be

two critical values at each analysis; the upper boundary corresponding to rejecting the

null hypothesis of H0 : µ ≤ µ0, and a lower boundary corresponding to rejecting the null

hypothesis of H0 : µ ≥ µ0. The upper boundary is similar to the one described above, and

the lower boundary is denoted by the letter a. At analysis time tj the trial is stopped if the

test statistic, Sj , is less than aj and the null is rejected in favor of the lower alternative.

For completeness, we note that it is possible to allow for stopping early for futility in

a two-sided test as well. Here, intermediate boundaries b and c (with aj ≤ bj ≤ cj ≤ dj

provide stopping if Sj ≥ bj and Sj ≤ cj . These boundaries correspond to rejecting µ ≤ µb

and µ ≥ µc, respectively. If a trial stops because bj ≤ Sj ≤ cj , the conclusion is that

µb ≤ µ ≤ µc because it has rejected the hypotheses that µ ≤ µb and µ ≥ µc, which is

interpreted as approximate equivalence in this two-sided test setting.

To generalize, stopping boundaries can be described by the continuation set, Cj =

(aj , bj ]∪ [cj , dj), with −∞ ≤ aj ≤ bj ≤ cj ≤ dj ≤ ∞. If the test statistic is contained in the

continuation set, Cj , the trial continues to the next analysis time, tj+1. By defining CJ as

the empty set the trial is assured of having no more than J analyses. Each boundary can

be regarded as rejecting a specific one-sided hypothesis:

a : µ ≥ µa

b : µ ≤ µb

c : µ ≥ µc

d : µ ≤ µd
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In our standard example of a one-sided test of a greater alternative, µd = µ0, as crossing this

upper boundary corresponds to rejecting the null hypothesis. Crossing the futility boundary

a corresponds to rejecting the hypothesis that µ ≥ µalt where µalt is a scientifically important

effect.

Boundary scales can vary (as with test statistics) and it is straightforward to change

between various possible scales. As noted earlier, at the design stage of a clinical trial,

potential boundaries should be considered on a scientifically relevant scale to ensure that

the conclusions that would be drawn from stopping at each interim analysis are of scientific

importance. From a statistical perspective, the boundaries chosen should have correct type

I error under the null and should have the desired power for a specific alternative.

Given the constraint of type I and type II errors at the nominal level and the timing

of interim analysis, there still are many possibilities for appropriate stopping boundaries.

Restricting possible boundaries to be monotonic on the sample mean scale (i.e. dj−1 ≤ dj∀j

seems sensible, however this criterion still leaves many possibilities. As long as the bound-

aries fullfill the basic type I and type II error constraint (and are monotonic) boundaries

can differ greatly in terms of general operating characteristics for a clinical trial. Among

all designs that have 97.5% power for a specific alternative, there can be differences in the

maximal possible sample size (NJ) and the average sample number (ASN) for specific values

(such as under the null and the specified alternative). These trade offs in general stem from

the timing of interim analyses and the amount of so-called “conservatism” at early analyses.

A higher probability of stopping at early analyses (lack of “conservatism”) such as is true

when comparing a Pocock (1977) design to an O’Brien-Fleming (1979) design, generally

leads to a higher maximal sample size but lower ASN for several alternatives. The lower

ASN means that the design is more efficient for that specific alternative.

One way to describe specific design boundaries is the amount of error being “spent”

at each interim analysis. This approach was initially proposed as a type I error spending

function by Lan and DeMets (1983). For a design with a null hypothesis that µ ≤ µ0, the
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amount of type I error spent at each interim analysis is given by:

αj = P (Sj ≥ dj ,
j−1⋂
k=1

Sk ∈ Ck|µ = µ0)

On this error spending scale, differences in conservatism at early analyses are easily seen

as differences in the amount of type I error spent at early analyses. Designs with a higher

amount of type I error spent (less conservatism) are willing to declare efficacy for a lower

estimate of treatment effect at an early analysis than those with less type I error spent

(greater conservatism). How much early conservatism makes sense depends on the scientific

context of the study.

Pampallona et al. (1995) extend this concept of error spending to designs with early

stopping for futility as well. In this case, the futility boundary is rejecting the alternative of

interest (e.g. the one with 97.5% power) and thus at each interim analysis such a boundary

leads to a certain amount of type II error. As with spending the type I error, futility

boundaries can differ by how much type II error is spent at each interim analysis relative

to the final. The amount of early conservatism for a futility boundary should be decided by

scientific context.

2.3.1 Families of Designs

Pocock (1977) used stopping boundaries to account for multiple analyses by performing a

level α′ fixed sample test at each of the J analyses, where appropriate values for α′ maintain

the type I error. This approach leads to boundaries that are constant on the normalized

Z-statistic scale. The O’Brien-Fleming (1979) design similarly accounts for the multiple

analyses, but does so by maintaining a constant threshold on the standardized partial sum

scale. Wang and Tsiatis (1987) extended these designs to a more general one-parameter

family. Using their notation, the two-sided boundary rejects if the standardized partial sum

crosses a boundary such that for equally spaced analyses:

|Sj | ≥ Γ(α,K,∆)j∆; j = 1, ...,K

The Γ(α,K,∆) value is found by numerical search and ∆ is a user-specified parameter to

control the shape of the boundary at interim analyses. These designs can be thought of as



19

moving smoothly from O’Brien-Fleming to Pocock in terms of the differences between the

two in “conservatism” at early analysis times.

Kittelson and Emerson (1999) generalized these results into a unified family of designs

which further allow for a greater variety of choices in boundary shape and hypotheses. They

note that the boundaries on the sample mean (MLE) scale for common group sequential

tests can be written in the form:

aj = µa −Gafa(Πj)

bj = µb +Gbfb(Πj)

cj = µc −Gcfc(Πj)

dj = µd +Gdfd(Πj)

In these equations, the function f∗ defines a boundary shape function for the amount of

early conservatism as a function of the fractional amount of information (Πj = I(θj)
I(θJ )).

The values of G must be found by a computer search such that the boundaries formed

provide a correct level α test of the null hypothesis and a specified power level for a specific

alternative hypothesis. The specification of the alternative hypotheses follows as in the

previous discussion. For the purposes of this work, we are mostly considering cases of a

one-sided hypothesis with either stopping only for the alternative (a one boundary design)

or for either the alternative or the null (a two boundary design). Such designs mean that

we will be mostly interested in the aj and dj boundaries only. However, there should be no

difficultly in extending the results to a more general case.

The boundary shape function will specify the amount of “conservatism” at early analyses

and in turn determine the amount of efficiency of the sequential design. The Pocock design

for a two-sided test uses f(Πj) = Π−0.5
j for the aj and dj boundaries. The O’Brien-Fleming

design for a two-sided test similarly uses f(Πj) = Π−1
j . The Wang and Tsiatis one-parameter

family uses f(Πj) = Π−Pj , where P is a user-specified parameter. Another proposed bound-

ary – the triangular test of Whitehead and Stratton (1983) – uses f(Πj) = 1 + Π−1
j . The
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unified family approach allows for all of these designs and additional flexibility by using:

f∗(Πj) = A∗ + Π−P∗j (1−Πj)R∗ (2.4)

Values A, P , and R are user-specified shape parameters. Setting R = A = 0 gives the Wang

and Tsiatis one-parameter family, with P = 0.5 (Pocock) and P = 1 (O’Brien-Fleming)

as special cases. In general, the value P generally dictates the level of conservatism at

early analysis times, and the value R dictates the level of non-conservatism at early analysis

times, though there are relationships between the values of A, P , and R that make more

general statements difficult.

In general, we will consider the Pocock and O’Brien-Fleming boundaries as examples

of boundaries with less and more conservatism at early analysis times. In general, because

they are more likely to stop earlier, Pocock designs tend to be more efficient in terms

of average sample number than O’Brien-Fleming designs. However, for a fixed maximal

sample size, O’Brien-Fleming boundaries will be more powerful than Pocock due to the

early conservatism.

2.4 Post-Trial Inference

After a group sequential design reaches a conclusion, i.e. after a stopping boundary has

been crossed, final inference is desired. As with most statistical tests, we desire a point

estimate (on some scientifically relevant scale) and confidence intervals. Here again, the

changes in the sampling density due to the sequential design cause some revision from

traditional statistical inference. The maximum likelihood estimate at the time of stopping

is not unbiased for the truth, due to the sequential design. Various methods exist to account

for this bias: some methods such as the Rao-Blackwell adjusted unbiased estimate (RBUE)

correct for the bias completely and thus give an unbiased estimate; others, such as the

median unbiased estimate (MUE) and the bias adjusted (BAM) mean Whitehead (1986)
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correct for some of the bias in an effort to minimize mean squared error.

RBUE (µ̈) µ̈ = E

(
S1

N1
|(M,S) = (m, s)

)
MUE (µ̃) P

[
(M,S) > (m, s); µ̃

]
= 0.5

BAM (µ̌) E

(
S

NM
;µ = µ̌

)
=

s

Nm

All three statistics rely on the correct version of the sampling density that accounts for

the interim analyses. The MUE and BAM also are dependent on the value of δ and thus

will behave differently under a mean-variance relationship. Additionally, the MUE relies on

an ordering of space as well, as it relies on defining the probability of the two-dimensional

statistic (M,S) being greater than a specific value (in this case, the observed value (m, s)).

Here different authors have explored different orderings of the sample space. Tsiatis et al.

(1984) investigated an analysis time ordering, in which statistics that were observed earlier

and caused the trial to stop are always more extreme than those observed later. Under

this analysis time ordering and comparing only statistics that caused the trial to stop,

(M = 1, S/NM = −5) < (M = 3, S/NM = −10) and (M = 1, S/NM = 5) > (M =

3, S/NM = 10). Emerson and Fleming (1990) explored ordering based on the sample mean

instead, such that more extreme observed values of the sample mean are always considered

more extreme, regardless of when the trial was stopped. Under the sample mean ordering,

(M = 3, S/NM = −10) < (M = 1, S/NM = −5) and (M = 3, S/NM = 10) > (M =

1, S/NM = 5) regardless of stopping boudaries. A third ordering, the likelihood ratio

ordering, was suggested by Chang and O’Brien (1986). Under this ordering, statistics are

considered more extreme if they lead to a more extreme value of the likelihood ratio statistic:

p(M1, S1|µ = µ̂1)
p(M1, S1|µ0

>
p(M2, S2|µ = µ̂2)
p(M2, S2|µ0)

where µ̂ is the maximum likelihood estimate for µ given (M,S).

The construction of 95% confidence intervals also relies on the correct sampling density

from a group sequential design and the choice of ordering. We first note that with a group

sequential sampling density, a 95% confidence “interval” need not actually be a true interval,

and thus is a 95% confidence set. This confidence set is defined as all values of the parameter
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θ for which the observed statistic (m, s) would not be “unusual”, specifically the probability

of observing a statistic less the observed value if the truth were θ is between α
2 and 1− α

2 .

CI{(M,S) = (m, s)} =
{
θ :

α

2
≤ P ((M,S) ≤ (m, s)|θ) ≤ 1− α

2

}
(2.5)

This definition holds for all scenarios, however it is particularly useful to think of 95%

confidence sets in this way with group sequential designs because it shows how they can

be constructed. For each true value of the parameter of interest, θ, its inclusion in the

confidence set is determined by a so-called “inverted hypothesis test” in which the possible

value θ is included in the set if the observed value θ̂ can not be ruled out with 95% confidence

if the true value were θ. Here again, we note that the ≤ criterion must be defined for a

sequential trial and is determined by how the outcome space is ordered.

In the clinical trials setting, it is possible that confidence sets may not be true intervals,

a fact that is unsettling scientifically. Confidence intervals would be guaranteed if there were

stochastic ordering of the sample space. In a stochastically ordered space, X is stochastically

less than Y if P (c < X) < P (c < Y ) for all c. Stochastic ordering was proven for the case

of a fixed variance in clinical trials for the analysis time and sample mean (Emerson and

Fleming, 1990). However, it has never been proven for the case of likelihood ratio ordering.

The specific setting of longitudinal group sequential trials, is covered in the following

chapter, after we present a brief background of longitudinal analysis.
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Chapter 3

BACKGROUND – LONGITUDINAL DATA AND LONGITUDINAL
TRIALS

In fixed sample settings, longitudinal data present challenges not faced in a single mea-

surement setting. Many of these challenges, such as correlated data, are amplified in the

group sequential framework. Additional challenges posed by repeated measurements on

individuals during the duration of the study are unique to sequential designs.

We consider the case in which the scientific quantity of interest is a change over time.

In our model, this quantity is the slope parameter β1 from a regression equation E(Y |X) =

β0 + β1x, where x represents study time from randomization.

3.1 Least Squares Regression

Throughout we assume that we are interested in the linear contrast over time, which leads

to the model:

E(Y |X = x) =β0 + β1x, (3.1)

where β1 is the parameter of interest. We will let V denote the true covariance matrix of the

observations Y . We let X denote the design matrix, as in standard linear model notation.

We first consider the case of independent, homoscedastic data, so that V = σ2I. Then,

assuming XTX is nonsingular, using standard methods for linear models gives:

β̂ =(XTX)−1XTY (3.2)

V ar(β̂) =σ2(XTX)−1 (3.3)

From this equation, we know that the variance of the estimate for the parameter of interest

is

V ar(β̂1) =
σ2

nV ar(x)
, (3.4)
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where σ2 is the variance of the residuals, n is the total number of observations and x is the

study time from randomization.

Ordinary least squares regression can be modified to accommodate heteroscedastic and

correlated data if the covariance structure of the observations is known (or assumed to be

known). We will use “weighted least squares” (WLS) regression to denote the case in which

independence is still assumed, but the diagonal elements of the covariance matrix need not

be constant - the situation of heteroscedastic data. We will use “generalized least squares”

(GLS) to denote the case in which neither independence nor homoscedasticity is assumed.

In both cases, for an assumed covariance matrix, W , the equations from OLS are modified

to estimate β̂ with different weights for the observations.

β̂ =(XTW−1X)−1XTW−1Y

V ar(β̂) =(XTW−1X)−1XTW−1VW−1X(XTW−1X)−1

All choices of W will yield unbiased estimates for β̂, but they will differ in the standard

error of the estimate. The Gauss-Markov theorem shows that among all linear unbiased

estimators, the estimator from WLS with known, correct weights (W−1 = V −1) is the most

efficient and thus it is the best linear unbiased estimator (BLUE). If the known weights are

used, the equation for the variance of the estimates simplifies to:

V ar(β̂) =(XTW−1X)−1

We note that although this is the classic linear model, we are truly interested in the linear

contrast over time, even if the data are not perfectly linear. Such a contrast is of scientific

interest, and furthermore, in the clinical trial setting, analyses must be prespecified to satisfy

regulatory authorities. Therefore, if a linear model was specified a priori, the model will be

used even if the true data are not perfectly linear.

3.2 Generalized Estimating Equations

Liang and Zeger (1986) proposed Generalized Estimating Equations (GEE) as a alternative

method to random effects models for estimating slopes with correlated longitudinal data.
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Unlike random effects models, GEE estimates the marginal effect; it gives the population

average effect rather than the average from an individual “typical” in the population.

GEE is implemented with estimating equations and accounts for possible correlation in

the observations with a so-called “working” covariance matrix, W . As before, denote the

true covariance matrix as V . Standard errors for the estimates are then obtained using the

Eicker-Huber-White sandwich method (Liang and Zeger, 1986) . For a linear model, and

assuming V ar(Y ) = σ2V , this method leads to:

β̂ =(XTW−1X)−1XTW−1Y

V ar(β̂) =σ2(XTWX)−1XTW−1VW−1X(XTWX)−1

GEE is nearly always consistent for the true parameters β, regardless of the choice of

working covariance (departures will be discussed later). Assuming adequate sample size, the

sandwich estimates for the standard errors, when turned into confidence intervals, produce

appropriate coverage probabilities, regardless of the choice of working covariance matrix.

However, this choice does impact the asymptotic efficiency of the estimate. If the working

covariance matrix is of the same form (and is asymptotically consistent for) the true form

of the covariance matrix (W →p V ), GEE will be asymptotically efficient. This result is

analogous to the case of WLS using weights that are asymptotically consistent for V −1.

In all cases except working independence with a linear link, the GEE equations must

be solved iteratively. First, an estimate of β̂ is made (often using working independence).

Then the estimated β̂ is used to generate an estimate for ρ̂, where ρ̂ is the vector of pa-

rameters needed to estimate the working covariance, W (ρ̂). After an estimate for W (ρ̂) is

obtained, this new working covariance matrix is used to generate another estimate of β̂.

This process continues until updates no longer produce changes in the parameters (up to a

certain tolerance).

Various methods exist for estimating the parameter ρ in working covariance matrices.

The most common is that proposed by Liang and Zeger (1986), which simply uses a method

of moments estimator for the parameter. A scale parameter φ (in the case of the linear model

this scale parameter is the inverse of the constant error variance, 1
σ2 ) is estimated first, using

Pearson residuals. In the case of the linear model, these residuals are given by r̂ij = yij− ŷij .
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For K individuals with ni measurements per person, φ is estimated by:

φ̂−1 =

 K∑
i=1

∑
j=1

nir̂
2
ij

 /(N − p)

For the linear model, this estimate is identical to the estimate of σ̂2 from S2. With an esti-

mate for φ̂, the parameter(s) of the working covariance matrix can be estimated. Following

Liang and Zeger, for an exchangeable structure where corr(yij , yij′) = ρ for all j 6= j′, ρ can

be estimated as follows:

ρ̂ =

φ
K∑
i=1

∑
j>j′

r̂ij r̂ij′

K∑
i=1

ni(ni − 1)
2

− p

For an autoregressive with order one (AR(1)) structure, corr(yij , yij′) = ρ|j−j
′|. In this

circumstance, ρ can be estimated by regression with a log-link and no intercept term:

log(E(r̂ij r̂ij′)) =|j − j′| ∗ γ

log(ρ|j−j
′|) =|j − j′| ∗ γ

ρ =eγ

Additional research on the GEE has pointed out some limitations with consistency

and efficiency of the method. Efficiency concerns with GEE have been studied by several

authors. Zhao et al. (1992) illustrated cases in which when the correlation is high, using

working independence can lead to significant losses in efficiency. Other authors have noted

situations in which using working independence does not appear to lead to substantial

loses in efficiency Lipsitz et al. (1994). Fitzmaurice (1995) and Mancl and Leroux (1996)

demonstrated cases in which covariate variation within clusters can lead to efficiency losses

when using working independence, even with only moderate correlation. Wang and Carey

(2003) noted that differences in the estimation techniques for the parameter ρ in the working

covariance model can impact the relative efficiency of such designs. They note that using

working AR(1) with a “Gaussian estimation” procedure leads to improved efficiency over a

moment estimator similar to that proposed by Liang and Zeger. Finally, some authors have
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suggested using an “unstructured” working covariance in which all correlation parameters

are estimated from the data (Gange and DeMets, 1996).

As previously noted, Pepe and Anderson (1994) showed that although GEE is always

consistent when using working independence, in certain circumstances with time-varying

covariates, GEE need not be consistent when using other working covariance matrices.

Crowder (1995) gave an example with correlated binary data in which using working AR(1)

with truly exchangeable data led to inconsistent estimation of the true parameters. In

the setting of this dissertation with the study times fixed by design, consistency will hold

regardless of the choice of working covariance matrix. However, this condition will not nec-

essarily be true in all longitudinal trials, and the potential inconsistency may be motivation

for using working independence even when it may be inefficient.

3.3 Information Growth in Longitudinal Trials

In sequential clinical trials with longitudinal data, special consideration must be given to

the information growth of such trials. There are several potential issues with estimating the

information growth in a longitudinal trial. The first is that the information for the slope

parameter increases dramatically as the spread of measurements in the predictor space

increases, and the estimated information growth must account for this component of the

information as well as the increasing total number of measurements. Secondly, the choice

of how to handle the possible correlation of the data can lead to nonmonotonic information

growth. Finally, a mean-variance relationship can lead to a different final total information

under different alternatives, making the estimation of the information growth difficult.

Consider first the case in which all of the data are independent. Here there are two

potential issues with the information growth, which we consider fully as an introduction

to potential issues that will be encountered later with heteroscedastic and correlated data.

The first is that, as noted in equation 3.3, the variance of the estimate of interest is given

by σ2

nV ar(x) . Thus, the true fraction of information is πj = I(β̂j)

I(β̂J )
= njV arj(x)

nJV arJ (x) . Wu and Lan

(1992) noted that using a “typical” estimate of the information growth as a ratio of the

sample sizes, nj

nJ
, overestimates the true information in this setting, because V arj(x)

V arJ (x) must

be less than or equal to 1, so nj

nJ
≥ ( nj

nJ
)( V arj(x)
V arJ (x)). We will illustrate consequences of this
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overestimation in chapter 4.

The GEE method has been previously studied in group sequential designs by Wei et al.

(1990) and Lee et al. (1996), among others. Wei et al. studied the use of GEE with repeated

measurements in a trial, for example with repeated cholesterol measurements on individuals

enrolled in a trial. Unlike our setting, they were not interested in the change in cholesterol

over time; rather they were interested in accounting for the correlation on measurements

within an individual to evaluate a difference in mean cholesterol between treatment groups.

Lee et al. studied the case of using GEE to estimate a change over time in a group

sequential design. They showed that the independent increment structure is true if the

working covariance matrix is consistent for the true covariance matrix. This result is con-

sistent with later theory that showed that the use of an efficient statistic must lead to an

independent increment structure, as noted previously (Jennison and Turnbull, 1997; Scharf-

stein et al., 1997). Lee et al. further speculate that using a working covariance matrix that

is not consistent for the truth but does converge to some (incorrect) matrix will lead to

“nearly” independent increments.

Longitudinal data with correlated observations have the more general problem of nui-

sance parameters due to the need to estimate correlation (and variance). The problem of

estimating nuisance parameters has been studied for group sequential trials by Burington

and Emerson (2003). They noted that imprecision of the estimated nuisance parameters

can lead to error spending boundaries that do not reflect the true known proportionate

information available at each analysis, while boundaries constrained on other scales will not

necessarily adhere to the desired boundary shape function. Several authors have further

conjectured that the imprecision inherent in estimating within group variances or baseline

event rates at the earliest of interim analyses might lead to a spurious appearance of non-

monotonic information growth during the monitoring of a study (Scharfstein et al., 1997;

Burington and Emerson, 2003). They speculate that such situations are probably rare in

practice, due to the relatively large increments of information typically accrued between

successive analyses: the monotonic increase in available data is expected to overwhelm the

potential nonmonotonicity in the estimates of the nuisance parameters across the analyses.

We explore the impact of assuming homoscedasticity with heteroscedastic data in chap-
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ters 5 and 6. In chapter 7, we explore using working independence with correlated data,

both with and without heteroscedasticity.
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Chapter 4

INDEPENDENT DATA WITH NO HETEROSCEDASTICITY

This chapter illustrates potential problems with standard group sequential trials when

the information growth is potentially misspecified due to each observation not contributing

equally to the information about the statistic. This problem was first noted by Wu and Lan

(1992) with longitudinal data. We use the case of longitudinal, independent, homoscedastic

data to illustrate consequences of misspecified information growth. We then explore the

potential problems if the constant variance cannot be correctly estimated due to model

misspecification. If the data are not exactly linear, the model-based standard errors will

not consistently estimate the constant variance, and we briefly consider the consequence of

this situation in a group sequential setting.

4.1 Homoscedastic, Linear Data

As mentioned previously, the true information growth of independent, homoscedastic, linear

data is easily estimated and can be planned for in a sequential clinical trial. For illustrative

purposes, we compare the true information growth in this setting, πj = σ2/njV arj(x)
σ2/nJV arJ (x)

, to the

naive estimate, πj = nj

nJ
. As the difference in the two estimates depends on the difference in

the variation of the predictor space at the interim compared to final analysis times ( V arj(x)
V arJ (x)),

we expect that designs in which accrual is short relative to follow-up will see the greatest

difference in the true information growth compared to the naive estimate. In designs where

accrual is long relative to follow-up, the two estimates should be similar. In an extreme

case of very slow accrual relative to follow-up, the change in the variance of the predictor

space would be minimal with each added measurement and nearly all of the increase in

information would be due simply to the increasing number of subjects.

For an example, consider the case of 10 measurements made over time, with one mea-

surement at baseline and one at each of 9 months thereafter. Figure 4.1 shows the true
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Figure 4.1: Plots showing the true information growth (solid line) relative to the information
growth that would be estimated from the fraction of the total number of measurements
(dashed line). In all cases, estimating the IG by the number of measurements overestimates
the true information.
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information growth for this setting, with varying accrual patterns. This figure demon-

strates that in all cases a naive approach to estimating the information growth as simply

a fraction of the sample sizes overestimates the true information, as noted previously. In

cases with short accrual relative to the length of follow-up, this overestimation is dramatic.

For example, with 2 month accrual and four analyses equally spaced in calendar time, the

first analysis (after 2.75 months) has only 1.5% of the information that would be present

at the final analysis. In contrast, the naive assumption that the information grows propor-

tional to the number of measurements would estimate that this first analysis takes place

with 22.5% of the final information. Similarly, at the second analysis, the true information

is only 14% of the final, yet the naive estimate would be 50%, and at the third analysis the

true information is 48% of the final but the naive estimate would be 77.5%. Table 4.1 shows

the number of measurements at each study time for each interim analysis in this setting.

The potential consequences of overestimating the information growth over the course of the

study are discussed below.

Table 4.1: Distribution of observed study times at each interim analysis with 2 month
accrual. The proportion of the final amount at each study time is given.

Analysis 0 1 2 3 4 5 6 7 8 9 True IG Naive IG

1 1.00 0.87 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.015 0.225

2 1.00 1.00 1.00 1.00 0.75 0.25 0.00 0.00 0.00 0.00 0.14 0.50

3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.62 0.13 0.00 0.48 0.775

4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 1

4.2 Consequences in Sequential Designs

The issue of correctly specifying the information growth at the design stage has been pre-

viously explored (Proschan et al., 1992; Jennison and Turnbull, 2000). Applied to the

longitudinal setting, the consequences of the misspecified information growth depend on

how badly the information growth is misspecified and what mechanisms were pre-specified
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to account for different true information growth. These authors have noted that slight

variations in the true information growth from the planned analysis did not have a large

impact on the boundaries or inference. In the longitudinal setting, their observation most

closely corresponds to the case of long accrual relative to follow-up where the naive estimate

based only on the number of measurements is likely to be a close approximation to the true

information growth.

4.2.1 Boundary Design

We consider four approaches to group sequential design and analysis in this setting to

illustrate potential difficulties associated with incorrectly specified information growth. For

each approach, we consider (1) how the boundaries for the group sequential design were

constructed, which will be determined by the assumed information growth at the time of

each analysis, (2) how the design is to be used during the course of the trial, which will

include the scale on which interim statistics will be evaluated and if the design boundaries

are fixed or can be adjusted during the trial, and (3) how the alternative with assumed

97.5% power was calculated.

As an example, we consider the case of uniform accrual over 2 months, measurements

at baseline and months 1-9, and four analyses equally spaced in calendar time. We choose

the maximal sample size to be fixed in this setting and allow the power to vary between

designs. All designs are constructed to have fixed 0.025 type I error rate.

The first approach is to use boundaries that are fixed on the sample mean scale and

based on either the incorrect, naive information growth or the correct information growth.

Constraining on this scale implies a belief that not only is the information growth specified

correctly, but that the σ2 is also specified exactly. Specifically, for this approach – fixed

boundaries on the sample mean scale – we have that:

• Boundaries are constructed using the specified information growth, which might be

either the naive information growth or the true information growth (see table 4.2).

• At each interim analysis, the sample mean from the interim analysis is compared

to the boundaries designed on the sample mean scale and the decision is made to
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continue or stop the trial. The boundaries constructed in the design phase remain

fixed throughout the study.

• The alternative with 97.5% power for comparison was calculated from the design with

the correctly specified information growth.

The second approach uses boundaries that are fixed on the z-statistic scale based on

either the incorrect, naive information growth or the correct information growth. For this

approach – fixed boundaries on the z-statistic scale – we have that:

• Boundaries are constructed using the specified information growth, either the naive

information growth or the true information growth (see table 4.2).

• At each interim analysis, the z-statistic from the interim analysis is compared to the

boundaries designed on the z-statistic scale and the decision is made to continue or stop

the trial. The boundaries constructed in the design phase remain fixed throughout

the study.

• The alternative with 97.5% power for comparison was calculated from the design with

the correctly specified information growth.

For both of these approaches, we consider boundaries that allow for early stopping for

the alternative only (one-sided) and for both the alternative and the null (two-sided). The

fixed boundaries for an O’Brien-Fleming design that result from the incorrect and correct

IG for our example are shown in table 4.2.

The third approach we consider is that of constrained boundaries (Burington and Emer-

son, 2003). This approach is intended to allow for recalibration of the stopping boundaries

during a trial to maintain type I error rate at the nominal level. The constrained boundary

approach allows for boundaries to be adjusted at all interim analyses based on the observed

information growth. For our example, we consider the case in which the boundaries at

the first three analysis times are fixed on the z-statistic scale, but at the final analysis the

boundaries are adjusted to account for the true information growth that was observed over

the course of the trial. Thus, for this constrained boundary approach we have:
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Table 4.2: Boundaries using incorrect (naive) and correct information growth fixed on the
sample mean and z-statistic scales for an O’Brien-Fleming design.

Sample Mean Scale

Naive IG Correct IG

Analysis # IG a d IG a d

1 0.225 -4.90 8.91 0.015 -127.5 131.4

2 0.500 0.00 4.01 0.140 -10.14 14.08

3 0.775 1.42 2.59 0.480 -0.17 4.11

4 1.000 2.01 2.01 1.000 1.97 1.97

Z-Statistic Scale

1 0.225 -2.32 4.23 0.015 -15.61 16.09

2 0.500 0.00 2.84 0.140 -3.79 5.27

3 0.775 1.25 2.28 0.480 -0.11 2.85

4 1.000 2.01 2.01 1.000 1.97 1.97
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• Boundaries are constructed using the specified information growth, either the naive

information growth or the true information growth.

• At each interim analysis, the z-statistic from the interim analysis is compared to the

boundaries designed on the z-statistic scale and the decision is made to continue or

stop the trial. The boundaries constructed during the design phase are fixed for the

first three analysis, but then the boundaries for the final analysis are recomputed to

account for the true information growth and maintain type I error rate.

• The alternative with 97.5% power for comparison was calculated from the design with

the correctly specified information growth.

The fourth and final approach we consider is the error spending approach of Lan and

DeMets (1983) which spends a certain amount of error at each interim analysis and thus

it does not exceed the nominal level. The amount of error to be spent at each analysis is

determined based on the information growth (either the naive or correct). However, the

actual boundaries for each interim analysis are computed based on the observed standard

error of the statistic and thus are computed to “spend” the correct amount of type I or type

II error regardless of the assumed information growth. We note that the efficacy boundary

is constructed to spend the correct amount of type I error and the futility boundary is

constructed to spend the correct amount of type II error for the alternative with presumed

97.5% power. For the error spending approach, we have:

• An error spending function is constructed using the incorrect information growth to

be consistent with the O’Brien-Fleming or Pocock design for this information growth.

The error spending functions for the type I and type II error are identical in this case.

• At each interim analysis, the error spending functions are used to calculate a z-statistic

critical value based on the observed true sampling density at that interim analysis that

will spend the specified amount of type I or type II error. The final analysis critical

value is calculated based only on the amount of remaining type I error to be spent,
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as with a constrained maximal sample size it is impossible to maintain both the type

I and type II error rate.

• The alternative with assumed 97.5% power for use in calculating the type II error

spending was taken from the design with the incorrect, naive information growth.

The alternative for comparison is the alternative with 97.5% power under the correctly

specified information growth.

Boundaries from the constrained boundary and error spending function approach for an

O’Brien-Fleming design originally constructed with the naive information growth are shown

in table 4.3.

Table 4.3: Boundaries using the constrained boundary and error spending approach with
the naive information growth and an O’Brien-Fleming design.

Z-Statistic Scale

Constrained Boundaries Error Spending

Analysis # IG a d %Error Spent a d

1 0.225 -2.324 4.226 0.000 -3.735 4.226

2 0.500 0.000 2.835 0.092 -1.336 2.836

3 0.775 1.252 2.277 0.488 0.468 2.310

4 1.000 1.876 1.876 1.000 2.105 2.105

4.2.2 Boundary Evaluation

Table 4.4 shows the dramatic increase in type I error rate when using the naive information

growth estimates in this setting of boundaries fixed on the sample mean scale. The bound-

aries are constructed to maintain a fixed 0.025 error rate, yet the single boundary type I

error rate is 0.32 using the Pocock boundary and 0.21 using an O’Brien-Fleming boundary.

For two boundary designs, the type I error rates are 0.29 and 0.20, respectively (table 4.5).
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Table 4.4: Stopping probability for the alternative (SPalt) at each of the four analyses under
the null and the alternative with 97.5% power using Pocock and O’Brien-Fleming (OBF)
stopping boundaries fixed under the naive information growth on the sample mean scale.

One Boundary - Under Null

OBF Pocock

Analysis Using Naive IG Using True IG Using Naive IG Using True IG

Number SPnull SPalt SPnull SPalt SPnull SPalt SPnull SPalt

1 0.000 0.135 0.000 0.000 0.000 0.252 0.000 0.007

2 0.000 0.044 0.000 0.000 0.000 0.055 0.000 0.007

3 0.000 0.019 0.000 0.002 0.000 0.011 0.000 0.006

4 0.793 0.009 0.975 0.023 0.680 0.002 0.975 0.005

Total 0.793 0.207 0.975 0.025 0.680 0.320 0.975 0.025

One Boundary - Under Alternative

OBF Pocock

Analysis Using Naive IG Using True IG Using Naive IG Using True IG

Number SPnull SPalt SPnull SPalt SPnull SPalt SPnull SPalt

1 0.000 0.267 0.000 0.000 0.000 0.466 0.000 0.028

2 0.000 0.309 0.000 0.000 0.000 0.292 0.000 0.192

3 0.000 0.298 0.000 0.449 0.000 0.178 0.000 0.512

4 0.017 0.109 0.025 0.526 0.010 0.054 0.025 0.243

Total 0.017 0.983 0.025 0.975 0.010 0.990 0.025 0.975
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Table 4.5: Stopping probability (SP) for the null or alternative at each of the four analyses
under the null and the alternative with 97.5% power using Pocock and O’Brien-Fleming
(OBF) stopping boundaries fixed under the naive information growth on the sample mean
scale.

Two Boundary - Under Null

OBF Pocock

Analysis Using Naive IG Using True IG Using Naive IG Using True IG

Number SPnull SPalt SPnull SPalt SPnull SPalt SPnull SPalt

1 0.274 0.138 0.000 0.000 0.488 0.274 0.033 0.007

2 0.279 0.039 0.000 0.000 0.160 0.027 0.251 0.007

3 0.209 0.013 0.455 0.002 0.044 0.003 0.547 0.006

4 0.045 0.003 0.520 0.023 0.004 0.000 0.144 0.004

Total 0.807 0.193 0.975 0.025 0.696 0.304 0.975 0.025

Two Boundary - Under Alternative

OBF Pocock

Analysis Using Naive IG Using True IG Using Naive IG Using True IG

Number SPnull SPalt SPnull SPalt SPnull SPalt SPnull SPalt

1 0.139 0.271 0.000 0.000 0.265 0.498 0.007 0.033

2 0.041 0.273 0.000 0.000 0.024 0.165 0.007 0.251

3 0.014 0.209 0.002 0.455 0.002 0.042 0.006 0.547

4 0.004 0.048 0.023 0.520 0.000 0.003 0.004 0.144

Total 0.199 0.801 0.025 0.975 0.291 0.709 0.025 0.975
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In this case, the estimated information is greater than the true information, which causes the

boundaries at interim analyses to be too narrow on the sample mean scale. These narrow

boundaries lead to some null trials being declared effective when they would not have been

if stopping boundaries constructed with the correct information had been used. This effect

can be seen by noting the difference in early stopping probabilities rejecting the null (SPalt)

at each analysis when using boundaries fixed by the naive estimates of the information and

under the true information when the null hypothesis is true. The inflation of the type I error

rates is slightly less for designs with both efficacy and futility boundaries, as some trials are

stopped prematurely early for futility, thus preventing these trials from contributing to the

type I error rate.

When using a single efficacy stopping boundary, designs constructed using the incorrect

information growth have a very slight increase in power for alternatives compared to designs

constructed using the correct information growth. Using the naive information growth,

interim boundaries are closer to the null and this change makes it more likely for trials to

be declared effective. When using both efficacy and futility boundaries, in addition to the

inflation of the type I error rate, there is also a loss of power due to the overestimated

information. Table 4.5 also shows that for the alternative with 97.5% power under the

true information growth, the power is only 71% using Pocock boundaries and 80% using

O’Brien-Fleming. This result is again due to the overestimated information causing the

interim boundaries to be too narrow; in this case the boundary for futility causes some

trials that would eventually reject the null to be stopped early for futility.

A more typical approach is to fix boundaries on the z-statistic scale, rather than on the

sample mean scale. Intuitively, this approach scales the test statistic by the approximately

true information available, so that the problem of overestimating the information at early

analysis times is lessened. The use of these statistics is known as the significance level

approach (Jennison and Turnbull, 2000). Indeed, the nominal type I error rate is nearly

preserved by fixing the boundaries on the z-statistic scale, even with the dramatic overesti-

mation of the true information growth (tables 4.6 and 4.7). With the one boundary design,

there is a slight elevation in the type I error rate and a slight decrease in the power due

to the increased correlation of measurements at the first interim analyses relative to what
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Table 4.6: Stopping probability for the alternative (SPalt) at each of the four analyses under
the null and the alternative with 97.5% power using Pocock and O’Brien-Fleming (OBF)
stopping boundaries fixed under the naive information growth on the z-statistic scale.

One Boundary - Under Null

OBF Pocock

Analysis Using Naive IG Using True IG Using Naive IG Using True IG

Number SPnull SPalt SPnull SPalt SPnull SPalt SPnull SPalt

1 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.007

2 0.000 0.002 0.000 0.000 0.000 0.008 0.000 0.007

3 0.000 0.010 0.000 0.002 0.000 0.008 0.000 0.006

4 0.971 0.017 0.975 0.023 0.969 0.006 0.975 0.005

Total 0.971 0.029 0.975 0.025 0.969 0.031 0.975 0.025

One Boundary - Under Alternative

OBF Pocock

Analysis Using Naive IG Using True IG Using Naive IG Using True IG

Number SPnull SPalt SPnull SPalt SPnull SPalt SPnull SPalt

1 0.000 0.000 0.000 0.000 0.000 0.030 0.000 0.028

2 0.000 0.081 0.000 0.000 0.000 0.172 0.000 0.192

3 0.000 0.586 0.000 0.449 0.000 0.461 0.000 0.512

4 0.027 0.307 0.025 0.526 0.051 0.286 0.025 0.243

Total 0.027 0.973 0.025 0.975 0.051 0.949 0.025 0.975
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Table 4.7: Stopping probability (SP) for the null or alternative at each of the four analyses
under the null and the alternative with 97.5% power using Pocock and O’Brien-Fleming
(OBF) stopping boundaries fixed under the naive information growth on the z-statistic
scale.

Two Boundary - Under Null

OBF Pocock

Analysis Using Naive IG Using True IG Using Naive IG Using True IG

Number SPnull SPalt SPnull SPalt SPnull SPalt SPnull SPalt

1 0.010 0.000 0.000 0.000 0.452 0.010 0.033 0.007

2 0.492 0.002 0.000 0.000 0.418 0.008 0.251 0.007

3 0.407 0.010 0.455 0.002 0.097 0.004 0.547 0.006

4 0.069 0.009 0.520 0.023 0.009 0.001 0.144 0.004

Total 0.978 0.022 0.975 0.025 0.977 0.023 0.975 0.025

Two Boundary - Under Alternative

OBF Pocock

Analysis Using Naive IG Using True IG Using Naive IG Using True IG

Number SPnull SPalt SPnull SPalt SPnull SPalt SPnull SPalt

1 0.002 0.000 0.000 0.000 0.274 0.033 0.007 0.033

2 0.069 0.087 0.000 0.000 0.178 0.156 0.007 0.251

3 0.048 0.574 0.002 0.455 0.041 0.257 0.006 0.547

4 0.008 0.211 0.023 0.520 0.003 0.058 0.004 0.144

Total 0.128 0.872 0.025 0.975 0.495 0.505 0.025 0.975
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is assumed under the naive information growth (table 4.6). With two boundary designs,

this approach is very slightly conservative in the type I error rate and can have a dramatic

loss of power for the alternative that would have 97.5% power using the correct information

growth (table 4.7). Here, the increased correlation of the early interim analyses leads to tri-

als being stopped prematurely early for futility, thus contributing to the (slightly) reduced

type I error rate and the loss of power. This result is most noticeable with the Pocock

designs; the critical values for O’Brien-Fleming tests at early analyses are so high that few

trials are stopped at the earliest analyses, thus reducing this problem somewhat.

There are two more flexible methods to maintain the correct type I error rate during a

group sequential study compared to the significance level approach. The constrained bound-

ary approach (Burington and Emerson, 2003) is one such method. We use the constrained

boundary method to use the fixed (z-scale) boundaries at the interim analyses and then

recalculate boundaries at the end of the study, given the true information growth. This

approach will maintain the nominal type I error rate as the amount of type I error that has

already occurred can be computed when the final boundaries are calculated. This method

will generally not preserve power completely depending on the spacing of the analyses in

information growth time.

Constraining the first three analyses on the z-statistic scale for the case above, leads to

attained power in the one boundary case of 96.8% using the O’Brien-Fleming boundaries.

In the one boundary case, the constrained boundary after fixing the first three does not

maintain the type I error for the Pocock design because the cumulative stopping probability

for the first three analyses under the null is greater than the nominal value. As seen in

table 4.6, the type I error rate through three analyses is already 0.025. Thus, the constrained

boundary approach cannot maintain the nominal type I error rate in this setting. In the

two boundary case, the O’Brien-Fleming design has power of 87.5% and the Pocock design

has power of 50.8%.

The error spending approach of Lan and DeMets (1983) can also be used to ensure

correct type I error rates. This method spends a certain amount of type I error at each

interim analysis and thus does not exceed the nominal level. The attained power, however,

can fluctuate as seen previously, based on the spacing of the true information growth relative
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to the assumed information growth. For the one boundary case above, using the constrained

error spending scale gives the correct type I error rate. For the alternative with 97.5% power

under the true information growth, the attained power is 96.8% for the O’Brien-Fleming

design and 92.3% for the Pocock designs. In the two boundary case, the type I error rate is

again maintained at the nominal level. For the two boundary designs, the attained power

is 96.1% using the O’Brien-Fleming design and 97.7% using a Pocock design. In the case

of the two boundary Pocock design, the power for the alternative with 97.5% power under

the true information growth is actually greater using the error spending function approach

because the error spending function is spending the type II error for a different alternative

(based on the naive information growth). For this presumed alternative (under the naive

IG) the Pocock design has 96.7% power.

Although both of these approaches do maintain the type I error rate, they will not

generally conserve the expected stopping probabilities for the design as it was originally

conceived. We also note that comparing the attained power for designs in which the type I

error rate is not maintained is not a fair comparison, however all results are presented for

illustrative purposes only. The goal of the above section was to demonstrate the potential

consequences of misspecified information growth in group sequential longitudinal trials.

4.3 Homoscedastic, Nonlinear Data

We next examine the case in which the true effect is not exactly linear, but the parameter

of interest is still the linear change in time from randomization. We still assume that

the data are homoscedastic around the true mean. This scenario might occur if the true

effect of treatment were linear in time from randomization, but does not start exactly when

treatment is initiated – a circumstance that could occur if the treatment effect were delayed.

It could also occur if the true treatment effect were quadratic. Here, we assume that the

linear contrast over time is of scientific interest, even if the data are not exactly linear,

so we are interested in the behavior of the information growth in such circumstances. We

further note that in the setting of clinical trials, the analysis plan must be fully specified in

advance, so there is no way to adjust the model to accommodate the observed nonlinearities.

However, as mentioned previously, we are not addressing the important scientific issue of
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how the meaning of an average linear trend would change across analyses in a sequential

design.

Our primary interest in this case is the behavior of the information growth in this setting

to illustrate a case in which the information growth may differ based on an alternative due

to model misspecification. In this setting with homoscedastic but nonlinear data, the model-

based standard error of the parameter of interest is a function of both the variance of the

measurements and the amount of model misspecification. Here again, we let X represent the

design matrix for the fitted model (the same as equation 3.2) and our parameter of interest

is β1 from the linear model E(Y |X) = β0 + β1x. However, in this situation, E(Y |X) need

not be the exact linear model – it may be quadratic (E(Y |X) = γ0 + γ1x
2), for example.

Let the true value for E(Y |X) be equal to µ, regardless of what the true form of the data

is. The true variance for the OLS estimate of the parameter of interest is still the same as

in equation 3.4. However, estimating σ2 is more difficult in this setting. S2 is often used

to estimate σ2.

S2 =
1

n− 2

n∑
i=1

(yi − ŷi)2

In the setting of a linear contrast of a nonlinear model, S2 is not unbiased:

E[S2] =σ2
y|x +

||µ− E(Xβ̂)||2

n− 2

Thus, the model-based estimate of the standard errors will be too large, depending on

the degree to which the linear contrast differs from the true contrast. If the degree of the

systematic error is increasing with study time, then each successive model misspecification

term in S2 could be larger than the last. If the model misspecification term becomes large,

then it is possible for the model-based standard errors to become nonmonotonic.

If the true effect of the treatment only takes effect after a certain amount of time on the

treatment, such as might occur if a drug must build up in the body before an effect is seen,

the true model might include an indicator term;

E(Y |X = x) =β0 + β1x(1x≥c)

Time c is the time at which the treatment takes effect. To illustrate the dependence

of when the treatment takes effect on the model-based information growth, we examined
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Figure 4.2: Plots showing estimated information growth from linear model (solid line)
relative to the IG estimated from the total number of measurements (dashed line) under a
nonlinear true effect.
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different possible values for c. In all cases, the estimated linear effect at the end of the

study was constant; this requirement implies that larger values of c (later treatment effects)

have correspondingly larger values of the slope parameter after the treatment takes effect

(β1). We use a situation similar to before, with measurements at baseline (study time 0)

and follow-up times 1-9.

Figure 4.2 shows some information growth curves estimated from the model-based stan-

dard errors for different values of the change point c. If the change point occurs after

several follow up times, the curve can become nonmonotonic, indicating that the amount

of “information” is decreasing with increasing measurements being made. More accurately,

this phenomenon can be explained as the relative amount of information estimated at an

earlier point in time was high compared to the amount of information that is eventually

present at the end of the study, due to the apparent lack of systematic error in the estimated

parameter.

This model misspecification case can potentially cause two types of nonmonotonicity.

The first is the case in which the nonmonotonicity is such that the amount of information

at an interim analysis time exceeds the amount of information that is present at the final

analysis (due to the model misspecification). The second type of nonmonotonicity is when

the nonmonotonicity causes the amount of information at an early interim analysis to be

higher than the amount of information at a later interim analysis, but the information

at both interim analyses is still less than the information at the end of the study. In the

example, some nonmonotonicity is possible with a four year lag as the fraction of information

when calendar time is at 4.5 years is higher than when calendar time is at 6 years, but both

are still less than 1 (figure 4.2). More dramatic nonmonotonicity is observed with a lag of

six (or eight years) as the amount of fractional information in the middle of these studies is

greater than 1.

If the trial was planned for an appropriate sample size to detect the linear effect despite

potential model misspecification (or potentially just accounting for increased estimated σ2),

then trials with dramatic nonmonotonicity are particularly problematic. Here, at an interim

analysis where the estimated information fraction is greater than 1, the group sequential

design might dictate that the trial be stopped for exceeding the amount of information
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planned for at the beginning of the study. This scenario is potentially very problematic

scientifically, as the very reason for allowing the final information to be lower (for a given σ2)

than the typical linear model was to allow for possible nonlinear models with scientifically

meaningful linear trends. Some possible approaches in a setting in which a delayed treatment

effect might be expected or anticipated would be (a) refusing to conduct (or plan) an analysis

at which the estimated information fraction is above 1, (b) using fixed boundaries that will

not necessarily match the true information growth achieved in the trial, and (c) using a

bootstrap approach to separate the systematic error component from σ̂2 as explained later.

For approach (a), refusing to conduct an analysis at a time for which the information

growth is above 1, may be unsatisfying scientifically; the original design must have had some

motivation for wanting to conduct an interim analysis at this point in the study. Therefore,

refusing to conduct an analysis due to statistical problems is less than ideal. In contrast,

refusing to plan an analysis at a point in the study where the information growth may exceed

1 is more satisfying scientifically, especially if it is expected that the treatment may have a

large effect late in the study (due to a lag or a quadratic effect). In such circumstances, it

may be worthwhile to consider whether early stopping for futility is scientifically prudent.

It may be that a stopping rule designed to stop for trending toward harm could be more

scientifically relevant in this case (such that the futility boundary at interim analyses is not

rejecting the alternative, but rather some less extreme value).

Option (b), using fixed boundaries at the interim analyses and then scaling appropriately

at the last analysis (using either the error spending or constrained boundary approach), may

be appropriate in some settings. One advantage of fixing the interim boundaries is that such

boundaries can be evaluated in advance scientifically for the appropriateness of stopping

for a particular effect size at the interim analyses. One difficulty using this approach is

fully exploring the properties of the proposed boundaries under different potential true

information growths. It is possible, though unlikely, that the combination of boundaries

fixed for the interim analyses and the true information growth would together make it

impossible to attain (or maintain) the nominal type I error rate.

Finally, approach (c) in this specific case of model misspecification with homoscedastic

data is to remove the model misspecification component from the estimated standard error
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and use the true information growth (that which is due to the constant σ2 and the linear

model) to construct and evaluate boundaries. In this setting, it is possible to remove the

misspecification component through the method outlined by Kittelson et al. (2005) where σ2

is estimated at each observed time from randomization separately or via the bootstrap. The

method of Kittelson, et al. will work asymptotically if the timing of the accrual and interim

analyses is such that some observations from all potential times from randomization have

been observed (all x values observed). In lieu of all potential study times being observed at

an interim analysis, a bootstrap approach can be used, which we outline below.

The general idea of the bootstrap approach is to simulate many replicates of the data

under the “truth”, calculating the slope parameter from the linear model each time and then

using the variability of these replicated slope parameters to estimate the standard error of

the slope without the additional component due to the lack of linearity. Conceptually

this procedure is successful because in an extreme case where there was no error variance

(σ2 = 0) but the data were quadratic instead of linear, the model-based estimate of the

standard error would be non-zero due entirely to the misspecified model. However, if the

data were bootstrapped within the observed study times (explained in detail below), then

the estimated slope would be the same each time; because there is no error variance, every

bootstrapped dataset would yield exactly the same simulated data and the same slope

parameter. In a less extreme case, with some error variance, the estimated slopes will be

different due to the error variability but they will be more similar than the model based

estimate of the standard error would predict, because every bootstrapped data set would

be estimating the same linear trend from the nonlinear data.

There are several technical issues associated with using the bootstrap to simulate new

data sets to estimate the true information at a particular point in time. In particular, the

bootstrapped sample data sets need to maintain the same values of observed study times

and the same accrual pattern.

To create a single bootstrapped estimate of the slope at a particular point in calendar

time:

• Note how many measurements are taken at each study time. (i.e. 100 at study time
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0, 50 at study time 1, 40 at study time 2, 0 at study time 3, etc.)

• At each study time, sample with replacement from the available measurements at that

particular study time (i.e. sample 100 measurements from all measurements at study

time 0, 50 from study time 1, etc.)

• Calculate the OLS slope for this bootstrapped data set

If study times are not exactly the same (our general setting), values for a particular

study time can be bootstrapped within a neighborhood of the closest study time values. If

the information is to be estimated at a time such that the last observed study time has only

one measurement (or a very small number of measurements), then it may be necessary to

consider a parametric bootstrap at this study time. In such a case, the population to be

bootstrap sampled from could be estimated to have the mean of the observed data at that

study time with a standard deviation estimated from the other study times.

One example of how the bootstrap can be used to recreate the true information growth

in the presence of model misspecification is shown in figure 4.3. This example considers a

scenario with uniform accrual over two years, and measurements at baseline and every two

years thereafter (so x = 0, 2, 4, 6) in which the data are truly quadratic. Figure 4.3 shows

the true information growth, the model based information growth (which is nonmonotonic)

and 10 bootstrapped estimates of the information growth.

Although the model misspecification case is important to consider for group sequential

designs, we will not consider it further here. We are also not addressing the issue of whether

or not interim analyses of a linear contrast are relevant for settings in which there is strong

reason to believe that the underlying contrast is dramatically nonlinear.
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Figure 4.3: Information growth in the non-linear contrast setting is correctly estimated
using a bootstrap approach when the model-based IG (dashed line) is nonmonotonic.
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Chapter 5

INDEPENDENT DATA WITH PREDICTOR-VARIANCE
HETEROSCEDASTICITY

We next examine the case in which the assumption of constant variance is incorrect

due to a predictor-variance relationship. In this case, regardless of the alternative, the

longitudinal measurements are heteroscedastic; the variance of the outcomes depends on

the value of the predictor variable. In our case, this relationship would correspond to a

model where the measurements were becoming more (or less) variable in study time. For

example, such a relationship might occur if there were rigid entry criteria for the study

(such as fasting glucose values within a narrow range), causing measurements close to study

time 0 to be less variable than measurements after more study time has passed.

In this chapter, we examine the effect of this predictor-variance heteroscedasticity on the

true information growth for a clinical trial, as well as consequences that stem from ordinary

least squares regression in this setting.

5.1 Model

In this case our standard one-sample model:

E(Y |x) =µ

=β01 + β1x

Cov(Yi) =σ2V (µ)

has

Vkk = (a+ bxk)γ (5.1)

Vkk′ = 0 k 6= k′

where γ ≥ 0 and a and b are constants such that (a+ bxk)γ is non-negative over the range

of x values observed.
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This model allows the constants a and b to alter the amount of heteroscedasticity in

study time. The case in which these constants are related to the alternative of interest

is covered in the next chapter, in which we consider a mean-variance relationship. In the

present chapter, we assume that a and b are not related to the parameter of interest.

5.2 Using Weighted Least Squares (Efficient, Known Weights)

In the case of heteroscedasticity, the ordinary least squares estimate, β̂ = (XTX)−1XTY , is

not the best linear unbiased estimator. Rather, the best linear unbiased estimator (BLUE)

is the weighted least squares estimate, β̂w = (XTW−1X)−1XTW−1Y , with W known and

equal to V ar(Y ). As such, if an a priori decision was made to use weighted least squares

regression (with known weights) then the sequential analyses would still have an independent

increment structure, as previously described (Jennison and Turnbull, 1997; Scharfstein et al.,

1997).

Because it leads to an independent increment structure, using WLS with known weights

is thus similar to the case of independent longitudinal data. The information again does not

grow linearly with each added observation, but rather depends on the timing of the accrual

pattern, the time from randomization and the analysis times. However, the true information

growth can be estimated with knowledge of the expected study observation times (so that

the V arj(x) can be estimated).

Two additional concerns in the WLS case are designing a study to account appropri-

ately for the degree of heteroscedasticity and for the need to estimate the true weights in

practice. The first potential problem is that the amount of heteroscedasticity over time in

the study can affect the information growth. As might be expected intuitively, the amount

of fractional information early in a study is higher for a study with a large amount of pos-

itive heteroscedasticity (measurements becoming increasingly variable) than for one with

little to no heteroscedasticity. Assuming fast accrual relative to the timing of the follow up

measurements, the measurements taken later in the study will generally be more variable

and thus contribute less to the overall information growth. As an example of different in-

formation growths under different amounts of heteroscedasticity, consider a scenario with

measurements taken at baseline and follow up times 1-5, and uniform accrual over two years.
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Figure 5.1: The true information growth using WLS with different amounts of heteroscedas-
ticity. With no heteroscedasticity (γ = 0), the information grows more slowly than in cases
with more heteroscedasticity.
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Figure 5.1 shows the true information growth curves using WLS with different amounts of

positive heteroscedasticity indicated by the parameter γ as in equation 5.1. As expected,

greater heteroscedasticity leads to faster information growth. It should be noted here, that

greater heteroscedasticity will lead to lower overall information for a constant sample size

and similar values of the error variance σ2.

If heteroscedasticity was unexpected, or if greater heteroscedasticity is seen than was

planned for, then the estimated fractional information at interim analysis times will be too

low. Such underestimation of the true information growth will generally lead to boundaries

that are too conservative at interim analyses, compared to what was originally planned.

This result is in many respects the opposite problem from the naive overestimation of the

information growth with independent, longitudinal data.

5.3 Using Ordinary Least Squares (Inefficient (known) Weights)

We next turn attention to the case of using an inefficient estimator, in this case using

ordinary least squares regression (OLS) with heteroscedasticity. Using OLS will have con-

sequences both with the assumption of independent increments in the sampling density and

in potential nonmonotonicities in the true information growth.

With simple linear regression, we will find it useful to note expressly the formula for the

variance of the OLS estimate for the parameter of interest (β1) with heteroscedastic data.

Using a model for the predictor-variance relationship as in equation 5.1, we let σ2
i denote

the variance of the ith observation for simplicity in the notation. Then,

V ar(β̂j) =(XT
j Xj)−1(XT

j VjXj)(XT
j X)−1

=

 nj
∑
xi∑

xi
∑
x2
i

−1  ∑σ2
i

∑
xiσ

2
i∑

xiσ
2
i

∑
x2
iσ

2
i

 nj
∑
xi∑

xi
∑
x2
i

−1
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Solving just for V ar(β̂1j) gives:

V ar(β̂1j) =


1

nj

nj∑
i=1

(xi − x̄j)2


2
( nj∑
i=1

xi

)2 nj∑
i=1

σ2
i − 2nj

( nj∑
i=1

xi

)( nj∑
i=1

xiσ
2
i

)
+ n2

j

( nj∑
i=1

x2
iσ

2
i

)

=


1

nj

nj∑
i=1

(xi − x̄j)2


2{

n2
j

nj∑
i=1

σ2
i (xi − x̄j)2

}

=


nj∑
i=1

σ2
i (xi − x̄j)2

( nj∑
i=1

(xi − x̄j)2

)2



=
(

1
njV arj(x)

)


nj∑
i=1

σ2
i (xi − x̄j)2

nj∑
i=1

(xi − x̄j)2

 (5.2)

This formula illustrates that the variance of the slope when using OLS will be larger

when the data at the extremes of the predictor space (i.e. with large values of xi − x̄)

are more variable. Intuitively, this outcome is expected as data at the extremes will be

points of high leverage when weighted as if the data were independent. The high leverage

at points further in the predictor space will make the slope more variable if the possible

values of the observations at such points are themselves more variable. In contrast, if

data at the extremes of the predictor space were highly non-variable compared to data

less extreme in the predictor space, the slope would be much less variable. The lack of

variability at points of high leverage would in this scenario “anchor” the regression line over

repeated samples (despite the variability of points in the middle of the predictor space) and

cause the variability of the slope to be less than what would have been predicted assuming

homoscedasticity.
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5.3.1 Non-Independent Increments

As noted previously, the integration of the sampling density for a group sequential trial is

simplified greatly by the assumption of independent increments, and all common software

for clinical trials relies on this assumption. However, the assumption may not hold if an

inefficient estimator is used.

For two analysis times, tj and tk with j < k, let βj and βk denote the OLS estimates at

these analysis times. Then:

V ar(β̂j) =(XT
j Xj)−1XT

j VjXj(XT
j Xj)−1 (5.3)

V ar(β̂k) =(XT
k Xk)−1XT

k VkXk(XT
k Xk)−1

Following the notation of Lee et al. (1996), we note that the estimate β̂j must be based on

a subset of the full data (Yk), such that β̂j = ATYk for some k × k matrix A. Then,

Cov(β̂j , β̂k) =ATVkXk(XT
k Xk)−1

In particular, AT can be written as a block matrix, [(XT
j Xj)−1XT

j 02×nj∗ ], where nj∗

denotes the number of additional measurements between analysis times (nk = nj + nj∗).

Under this arrangement, Vj will be a nj × nj submatrix of Vk, such that

Cov(β̂j , β̂k) =
[
(XT

j Xj)−1XT
j 02×nj∗

]
VkXk(XT

k Xk)−1

=
[
(XT

j Xj)−1XT
j Vj 02×nj∗

]Xj

Xj∗

[XT
k Xk

]−1

=
[
(XT

j Xj)−1XT
j VjXj + 02×2

] [
XT
k Xk

]−1

=
[
(XT

j Xj)−1XT
j VjXj

] [
XT
k Xk

]−1
(5.4)

Using OLS will lead to independent increments if there is no heteroscedasticity (i.e. if

Vj = σ2Ij) . In this case, Cov(β̂j , β̂k) = σ2(XT
k Xk)−1, which is equal to V ar(β̂k) when

there is no heteroscedasticity.

Using OLS will also lead to independent increments if both designs are fully balanced

and have the same vector of x measurements, but analysis time tk has more observations.

In this case, cXT
j Xj = XT

k Xk, where c can be interpreted as the multiplicative amount of
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additional complete cases at time tk than at time tj (and there are no incomplete cases at

either time due to the balance and complete sampling of the study times). Additionally, in

this setting, note that cXT
j VjXj = XT

k VkXk, so independent increments are a direct result

of applying the formulas in equations 5.4 and 5.3:

Cov(β̂j , β̂k) =
[
(XT

j Xj)−1XT
j VjXj

] [
XT
k Xk

]−1

=
[
(XT

j Xj)−1XT
j VjXj

] [
cXT

k Xk

]−1

=
1
c
V ar(β̂j)

and

V ar(β̂k) =(XT
k Xk)−1XT

k VkXk(XT
k Xk)−1

=(cXT
j Xj)−1(cXT

j VjXj)(cXT
j Xj)−1

=
1
c
V ar(β̂j)

However, the use of OLS will not give independent increments in general. Specifically,

even if there is balance at every interim analysis such that there are the same number of

measurements at every study time that have been observed by a particular interim analysis,

but the number of study times between analyses is different, there will not necessarily be

an independent increment structure.

The amount of departure from independent increments will depend on the amount of

change in the variability of the new measurements compared to the existing measurements,

as well as the amount of change in the distribution of the x measurements. Specifically for

the case of simple linear regression, we can use equation 5.4 and focus on the covariance of
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the slope parameters of interest, (Cov(β̂1j , β̂1k), to get:

Cov(β̂1j , β̂1k) =

(
1

n2
jV arj(x)

)(
1

n2
kV ark(x)

)
×

{
nj∑
i=1

xi

nk∑
i=1

xi

nj∑
i=1
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i + njnk

nj∑
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x2
iσ

2
i

− nj
nj∑
i=1

xi

nj∑
i=1

xiσ
2
i − nk

nk∑
i=1

xi

nj∑
i=1

xiσ
2
i )}

=
(

1
njV arj(x)

)(
1

nkV ark(x)

){ nj∑
i=1

σ2
i (xi − x̄j)(xi − x̄k)

}
(5.5)

For independent increments to be true, this expression for the covariance must be equal

to the variance at the later time point, tk. Using equation 5.2, we note that:

V ar(β̂1k) =
(

1
nkV ark(x)

)(
1

nkV ark(x)

) nk∑
i=1

σ2
i (xi − x̄k)2

Then combining the expressions for Cov(β̂1j , β̂1k) and V ar(β̂1k) gives:

Cov(β̂1j , β̂1k)

V ar(β̂1k)
=

(
1

njV arj(x)

) nj∑
i=1

σ2
i (xi − x̄j)(xi − x̄k)

(
1

nkV ark(x)

) nk∑
i=1

σ2
i (xi − x̄k)2

(5.6)

=

(
1

njV arj(x)

) nj∑
i=1

σ2
i (xi − x̄j)2 +

(
x̄j − x̄k
njV arj(x)

) nj∑
i=1

σ2
i (xi − x̄j)

(
1

nkV ark(x)

) nk∑
i=1

σ2
i (xi − x̄k)2

So the degree of non-independent increments will depend on the amount of change in the

ratio of the weighted variance to the unweighted one at tj and tk, as well as the difference

in the average of the predictor value x. This will be explored further below.

Assessing Departures from Independent Increments

In order to investigate the effect of departures from independent increments on the integra-

tion of the sampling density, we created two metrics: the sum of relative departures and
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the linear trend in departures.

For the sum of relative departures metric, we assess relative departures from the co-

variance matrix that would be true under independent increments. Under independent

increments, the covariance matrix of the observed statistic at four analysis times has the

form: 
a b c d

b b c d

c c c d

d d d d


where a, b, c, and d are the variances of the statistic at each of the four analysis times. We

define the sum of the relative departure from independent increments as:

J∑
j=2

j−1∑
i=1

∣∣∣∣1− Cov(β1i, β1j)
V ar(β1j)

∣∣∣∣ (5.7)

The use of relative departures, rather than absolute, ensures that two studies with dif-

ferent numbers of clusters (e.g. individuals) but identical relative accrual patterns, timing

of measurements, and analysis times, would yield the same value for departures from inde-

pendent increments.

This metric for examining the degree of departure from independent increments, how-

ever, does not reveal the direction of any departures. For example, the correlation of

previous statistics with the final one could be either higher or lower than expected under

independent increments, but could give the same value on the relative departures scale. For

this reason, we created another metric that would use directional information.

For this second metric, the linear trend in relative departures, we examine the linear

trend in the relative values of the covariance with the final observation. So the value of this

linear trend in relative departures from independent increments metric is given by:(
1

J
∑j

j=1(j − j̄)2

)J J∑
j=1

j
Cov(β̂1j , β̂1J)

V ar(β̂1J)
− (

J∑
j=1

j)

 J∑
j=1

Cov(β̂1j , β̂1J)

V ar(β̂1J)

 (5.8)

which is the slope from a linear regression of the scaled covariances on the analysis number

(j). The above equation uses j̄ to denote the average of these analysis numbers, similar to

x̄ in the standard linear regression setting.
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For this metric we standardize the values to the variance of the final statistic, to ensure

again that the number of clusters does not yield different results for otherwise identical

studies. Positive values of this metric reflect that previous analyses are less correlated than

would be expected under independent increments, while negative values reflect that the final

analysis is more correlated with the previous ones.

Consequences of departures from independent increments

In this setting of predictor-variance heteroscedasticity, the amount of the departure from

independent increments is constant over all possible alternatives. However, because the

assumption of independent increments is used when integrating the sampling density, de-

partures from it may impact calculation of the type I error rate and power for a specific

alternative.

To illustrate this possibility, we chose a scenario in which measurements are made at

baseline and study times 1-5, and individuals are accrued uniformly over two years. Four

total analyses are spaced equally in calendar time. We varied the amount of heteroscedas-

ticity by varying the amount of baseline variability (a), the amount of additional variability

with each one-unit increase in the predictor (b) and the power of the heteroscedasticity (γ),

as per equation 5.1. For simplicity, we assumed σ2 = 1 in all cases.

The impact of non-independent increments was assessed by comparing the expected type

I error rates and power using the standard sequential methods with the results from simulat-

ing trials with non-independent increments and using the boundaries developed under the

assumption of independent increments. We evaluated power at the alternative calculated

to have 97.5% power using the independent increment assumption. To summarize, for each

possible predictor-variance scenario, we construct a design such that:

• Boundaries are constructed using the true information growth for the scenario but

assuming independent increments. (So the diagonal of the covariance matrix of the

statistics is specified correctly, but the off-diagonal elements are not.)

• At each interim analysis, the z-statistic for the interim analysis is compared to the

boundaries constructed during the design phase.
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• The alternative with 97.5% power for comparison was calculated from the design that

assumes independent increments.

The design is evaluated at both the null and the alternative by simulating values of the

interim statistics from the true covariance matrix for the interim statistic (that may not

have independent increments). For each power calculation, we simulated one million trials.

If independent increments were true, then all of the designs would have a type I error rate

of 0.025 and 97.5% power for the calculated alternative. The simulation of one million trials

gives a standard error on the empirical estimate of 0.000156 if the true power were 0.025 or

0.975. If the true type I error rate were 0.025, 95% of the empirical estimates would be in

the range of 0.02468 to 0.02531.

In general, assuming independent increments in the presence of predictor-variance het-

eroscedasticity did not lead to severe problems with either the type I error rate or the power

(table 5.1). Extreme departures, where later outcomes were dramatically more variable, did

cause the overall type I error rate of the study to decrease below the nominal 0.025 level.

As an illustration of a specific case of extreme heteroscedasticity, consider a = 10, b = 5,

and γ = 2.25. With 100 individuals, the covariance matrix is:

Cov


β̂11

β̂12

β̂13

β̂14

 =


13.697 0.571 −0.069 −0.126

0.571 2.723 0.446 0.122

−0.069 0.446 1.293 0.549

−0.126 0.122 0.549 0.850


The sum of relative departures metric has the value 4.86; the linear trend in departures

metric has the value 0.395. A γ of 2.25 is a level of heterscedasticity that is likely greater

than what may occur in practice, yet assuming independent increments gives boundaries

that are only slightly conservative under the null: type I error rates of 0.021 and 0.023 with

the O’Brien-Fleming and Pocock designs, respectively (table 5.1).

The case of measurements becoming more variable in the predictor space leads mea-

surements from previous analyses to be less correlated with the current one than would be

expected under independent increments. Intuitively, this observation is reasonable. Addi-

tional measurements obtained at points far from the current value of x̄ have high leverage
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Table 5.1: Empirical type I error rate and power for the alternative calculated to have
97.5% power under an independent increment structure, under various predictor-variance
relationships. The relative and linear departures from independent increments are as in
equations 5.7 and 5.8, respectively.

Relative Linear OBF Pocock

Ind. Inc. Ind. Inc. SPnull SPalt SPnull SPalt

a=10, b=1 γ = 1 1.1058 0.1086 0.0248 0.9751 0.0252 0.9746

γ = 2 2.0721 0.1959 0.0246 0.9754 0.0250 0.9748

γ = 2.25 2.2890 0.2142 0.0245 0.9756 0.0249 0.9749

a=10, b=5 γ = 1 3.1910 0.3015 0.0243 0.9758 0.0255 0.9751

γ = 2 4.6718 0.3905 0.0220 0.9782 0.0233 0.9773

γ = 2.25 4.8579 0.3945 0.0211 0.9791 0.0227 0.9780

a=30, b=5 γ = 1 1.6415 0.1596 0.0248 0.9752 0.0251 0.9746

γ = 2 2.9261 0.2682 0.0241 0.9760 0.0246 0.9753

γ = 2.25 3.1876 0.2878 0.0238 0.9762 0.0243 0.9755

a=30, b=-5 γ = 1 3.6718 -0.3877 0.0245 0.9755 0.0231 0.9767

γ = 2 6.2328 -0.6840 0.0242 0.9758 0.0211 0.9789

γ = 2.25 6.7175 -0.7421 0.0242 0.9758 0.0208 0.9793
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using OLS. If these measurements are more variable than previous measurements, these

points will have a greater potential influence on the slope than would be expected if there

were no heteroscedasticity. In turn, the estimate of the slope at the later analysis will be less

similar to the estimate at an earlier analysis due to the increased variability of the points

further in the predictor space.

The opposite is true for the (rare) case in which measurements are becoming less variable

as study time increases. In this case, the decreased variability at points of high leverage

means that such points have less influence on the estimated slope than would have occurred

if there were no heteroscedasticity. In this case, although the points have high leverage,

they end up on average having less influence than expected due to decreased variability.

In both cases, the lack of independent increments is a result of using a weighting that

is optimal in the independent, homoscedatsic setting and not optimal in the setting of

heteroscedasticity. However, examining the properties of using OLS in these circumstances

is important, as the variance structure of the data may not be known in advance.

In this setting, non-independent increments do not generally lead to gross departures

from the nominal type I error rate. For intuition as to why this may be, we consider a

trial with two interim analyses at times t1 and t2. Let S1 and S1 denote the value of the

partial sum statistic at analysis times t1 and t1, respectively. Let S2−1 denote the additional

incremental data added between the two analysis times (S2−1 = S2−S1), and let C1 denote

the continuation region at the first analysis. The variance and expectation of the partial

sum statistic at the second analysis time are given by:

V ar(S2|S1 ∈ C1) =V ar(S1 + S2−1|S1 ∈ C1)

=V ar(S1|S1 ∈ C1) + V ar(S2−1|S1 ∈ C1) + 2Cov(S1, S2−1|S1 ∈ C1)

(5.9)

E(S2|S1 ∈ C1) =E(S1 + S2−1|S1 ∈ C1)

E(S2|S1 ∈ C1) =E(S1|S1 ∈ C1) + E(S2−1|S1 ∈ C1) (5.10)

If the data have an independent increment structure, V ar(S2−1|S1 ∈ C1) = V ar(S2−1) and

Cov(S1, S2−1|S1 ∈ C1) = 0. Further, E(S2−1) = E(S1). Thus, equations 5.9 and 5.10
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become:

V ar(S2|S1 ∈ C1) =V ar(S1|S1 ∈ C1) + V ar(S2−1) + 0

E(S2|S1 ∈ C1) =E(S1|S1 ∈ C1) + E(S1)

If the increments are not independent, these simplifications do not hold due to three

assumptions being violated. (1) The expectation of the second increment, E(S2−1|S1 ∈ C1),

may be different. (2) The variance of the second increment, V ar(S2−1), will not be the same

as when the data are truly independent, when the variance of the second statistic (V ar(S2))

is considered constant. (3) The covariance of the increments, Cov(S1, S2−1), is nonzero.

Here, we summarize these competing effects on the distribution of S2 when independent

increments do not hold.

If Cov(S1, S2−1) > 0:

• Expectation of S2−1 With positive correlation between the increments, the expec-

tation E(S2−1|S1 ∈ C1) will be more similar to E(S1|S1 ∈ C1) than is true when the

increments are independent. Using a futility boundary and an efficacy boundary for

a positive alternative, under the null, this term will be greater than zero, thus the

expectation of the statistic at the second analysis time, E(S2|S1 ∈ C1), will be greater

than what would be true with independent increments.

• Variance of S2−1 With positive correlation between the increments, the variance of

the second increment, V ar(S2−1), will be less than if the increments were indepen-

dent. This fact is true because we are comparing independent vs. non-independent

increments with constant values for V ar(S1) and V ar(S2). Because V ar(S2) =

V ar(S1) + V ar(S2−1) + 2Cov(S1, S2−1), if Cov(S1, S2−1) > 0, then V ar(S2−1) un-

der positive correlation must be less than is true when Cov(S1, S2−1) = 0.

• Covariance of the increments S1 and S2−1 By definition, with positive correlation

between the increments, the covariance between the two is greater than what would

be true with independent increments.
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These factors will impact the distribution of the test statistic at the second analysis in

different ways that depend also on the choice of boundary. They may approximately balance

out, as the variance of S2−1 is smaller than expected (and thus generally V ar(S2−1|S1 ∈ C1)

will be smaller than expected), but the covariance term is greater than expected (and thus

generally Cov(S1, S2−1|S1 ∈ C1) will be greater than expected).

If Cov(S1, S2−1 < 0:

• Expectation of S2−1 With negative correlation between the increments, the expec-

tation E(S2−1|S1 ∈ C1) will be less similar to E(S1|S1 ∈ C1) than is true when the

increments are independent. Using a futility boundary and an efficacy boundary for

a positive alternative, under the null, this term will be less than zero, thus the expec-

tation of the statistic at the second analysis time, E(S2|S1 ∈ C1), will be less than

what would be true with independent increments.

• Expectation of S2−1 With negative correlation between the increments, the variance

of the second increment, V ar(S2−1), will be greater than if the increments were inde-

pendent. This fact is true because we are comparing independent vs. non-independent

increments with constant values for V ar(S1) and V ar(S2). Because V ar(S2) =

V ar(S1) + V ar(S2−1) + 2Cov(S1, S2−1), if Cov(S1, S2−1) < 0, then V ar(S2−1) un-

der negative correlation must be greater than is true when Cov(S1, S2−1) = 0.

• Covariance of the increments S1 and S2−1 By definition, with negative correlation

between the increments, the covariance between the two is less than what would be

true with independent increments.

These factors will impact the distribution of the test statistic at the second analysis in

different ways that depend also on the choice of boundary. They may approximately balance

out, as the variance of S2−1 is greater than expected (and thus generally V ar(S2−1|S1 ∈ C1)

will be larger than expected), but the covariance term is less than expected (and thus

generally Cov(S1, S2−1|S1 ∈ C1) will be smaller than expected).In both cases, the interplay

of the effect of the non-independent increments on the expectation and variance of the

second test statistic is dependent on the choice of boundaries as well.
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5.3.2 Possible Nonmonotonic Information Growth

Besides non-independent increments, another possible consequence of using OLS with het-

eroscedastic data is information growth that is nonmonotonic. The intuitive explanation

for this possibility is that if the design is nearly balanced with less variable measurements,

adding an additional measurement further out in the predictor space that is much more

variable than the other measurements (due to the heteroscedasticity) may cause the vari-

ability of the estimated slope to increase. This highly variable measurement is a point of

high leverage under OLS (due to its extreme x value) and thus the increased variability

of this point can add a great deal of variability to the estimated slope. In extreme cases,

this situation can lead to a more variable estimate of the slope (less information) than

at the previous interim time (with less variable measurements). Generally, even with a

great deal of heteroscedasticity, as more measurements are obtained at time points further

from randomization and the design becomes more balanced again, the resulting informa-

tion will again increase such that the nonmontonicity observed in this setting is temporary

nonmonotonicity: The final information is still higher than the interim.

The effect of the amount of heteroscedasticity and the accrual/measurement pattern

(predictor space) on possible nonmonotonic information growth can be quantified directly.

For a later analysis time tk, the ratio of the variances, V ar(β̂1j)

V ar(β̂1k)
, will depend on the ratio of

the number of observations, the ratio of variance of the predictor space, and the ratio of the

weighted variance terms. Using equation 5.2, we get:

V ar(β̂1j)

V ar(β̂1k)
=
(
nk
nj

)2(V ark(x)
V arj(x)

)2


nj∑
i=1

σ2
i (xi − x̄j)2

nk∑
i=1

σ2
i (xi − x̄k)2



=
(
nk
nj

)2(V ark(x)
V arj(x)

)2


nj∑
i=1

σ2
i (xi − x̄j)2

nj∑
i=1

σ2
i (xi − x̄k)2 +

nk∑
i=(j+1)

σ2
i (xi − x̄k)2

 (5.11)
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This ratio will generally be greater than 1, indicating that, as expected, the variance

of the statistic of interest decreases over time. Specifically, the ratios nk
nj

and V ark(x)
V arj(x) must

always be greater than 1 in a group sequential design. However, the third term in equa-

tion 5.11 will only usually be less than 1. In order for nonmonotonic information growth

to occur, this term must be significantly less than 1 to overwhelm the gains in information

from increasing numbers of observations and increasing variance of the predictor space. This

result will occur if the added points at analysis time tk are such that the variances of points

with high leverage are large (so that σ2
i (xi − x̄)2 is large).

It should be noted here that there are important scientific reasons to include measure-

ments from times further from randomization, even if doing so detracts from the precision

with which we can estimate the slope. From a statistical perspective only, if nonmonotonic

information were observed, we could obtain a more precise estimate of the slope, by ignoring

the newly acquired data. However, this approach places complete faith in the underlying

linear model being true; the additional measurements further from randomization provide

evidence (or lack thereof) of the linear trend further away from randomization. This evi-

dence of a linear trend should be included, despite the statistical concerns about increased

variability of the estimate.

One illustration of the possible nonmonotonicity of the information growth in this setting

is shown in figure 5.2. The accrual pattern and measurement schedule match those from

the independent, homoscedastic section (2 month uniform accrual, measurements at baseline

and months 1-9 thereafter). The heteroscedasticity was generated as in equation 5.1, with

σ2 = 1, a = 1, b = 1, and γ = 2. The true information growth was obtained by simulation.

In this setting, particularly later in calendar time (meaning when the measurements are

becoming increasingly more variable), the true “information” does in fact decrease as the

first few more variable measurements are obtained. Eventually, as more measurements that

are more variable are accrued, the information again increases, as would be expected with

increasing the number of observations. The initial drop in information is in part attributable

to the amount of influence the first points can have on the estimated slope. As the first (more

variable) measurements are of high influence, the actual variability of the β̂1 parameter is

increased when these first points are added. When balance is achieved, such as at the end
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of a study with no dropout and no missing measurements, heteroscedasticity is less of a

concern, because no point is overly influential.
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Figure 5.2: Plot illustrating information growth when the data are very heteroscedastic. The
solid line represents the true, nonmonotonic information growth, simulated empirically. The
dashed line represents the model-based estimates of the information growth.

An additional concern in the OLS setting occurs if the assumption of constant variance

is used to estimate the standard error of the slope. If these “model-based” standard errors

are used, the estimated information growth will be different from the true information

growth. The model-based estimates of the standard error are constrained by the assumption

of constant variance. Thus, when adding points that are more variable, the estimate of

the constant variance is only slightly altered by adding a few measurements with more

variability. The estimate of the (constant) variance increases as more measurements with

increased variability are added, so the estimate of the variance is typically highest only after

all additional measurements have been taken. This increase in variance is usually offset by

gains in the number of measurements, leading to more typical behavior of the information
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growth curve. However, under extreme heteroscedasticity (γ large in equation 5.1), assuming

a constant variance could lead to dramatic cases in which the estimated information is lowest

after all of the more variable measurements have been accrued.

5.3.3 Practical Concerns

Type I error rate

Although we have illustrated situations where even extreme heteroscedasticity does not lead

to grave departures from the nominal type I error rate, if large amounts of heteroscedasticity

were expected, specific boundary choices could be explored by simulation at the design stage

of a trial. If large departures from the nominal type I error rate were found for approximate

estimates of the heteroscedasticity, the design boundaries could be modified such that the

rate could be maintained closer to the nominal level.

Power

The presence of heteroscedasticity can lead to power concerns if the design of the study

is not adequately prepared for the potential increased variability. However, if a study

is designed with a maximal final information (rather than a maximal sample size), and

this information can be attained despite the heteroscedasticity, the power for the original

alternative can be maintained (with the caveats about the differences in information growth

under differing degrees of heteroscedasticity). However, practical considerations may limit

the maximal number of observations that can be obtained. In this case, heteroscedasticity

would contribute to a loss of power for many alternatives.

Nonmonotonic Information Growth

The possibility of nonmonotonic information growth when using OLS presents a problem for

standard group sequential methods. If a study encounters nonmonotonic information growth

in truth due to predictor-variance heteroscedasticity, there are three options available: (1)

Do not conduct the planned interim analysis, or delay it until a time at which the information

has increased again such that the later analysis is more statistically informative than prior
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analyses. (2) Construct boundaries that correctly spend some amount of small, prespecified

type I error at this analysis, despite the decreased information. This second approach will

lead to nonmonotonic boundaries on the sample mean scale, in which estimates that would

have generated stopping for efficacy at the earlier (but less variable) analysis time would not

stop at this later analysis time. (3) To avoid nonmonotonic boundaries on the sample mean

scale, use the sample mean scale boundaries from the previous analysis time; remaining

analyses could be completed by accounting for the constrained boundaries. However, if

there is extreme nonmonotonic information growth between two analyses, it is possible

that this approach would spend all of the type I error for the trial (or even more than

the nominal amount) at this point with nonmonotonic information growth, which would

preclude conducting future analyses.
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Chapter 6

INDEPENDENT DATA WITH MEAN-VARIANCE
HETEROSCEDASTICITY

We next consider the case of a mean-variance relationship with independent, longitudinal

data. Although we have previously considered violations of the homoscedasticity assumption

centered on a predictor-variance relationship, this section considers the case in which this

assumption is violated by a mean-variance relationship.

A mean-variance relationship is, by definition, one in which the variance of the data is

a function of its mean value. In turn, the standard error of a statistic from these data will

also depend on the mean value. As before, we are interested in the slope parameter β1

from the linear model E(Y |x) = β0 + β1x. A mean-variance relationship in this sequential

longitudinal setting may have consequences for three possible reasons. First, as with all

mean-variance relationships, the standard error of the estimated slope will depend on the

true value of the slope. Second, the information growth over the course of the study will also

depend on the true value of the slope. Finally, as with predictor-variance heteroscedasticity,

using ordinary least squares is an inefficient estimator and may lead to a structure without

independent increments.

6.1 Model

In this case our standard model,

E(Y |x) =µ

=β01 + β1x

Cov(Yi) =σ2V (µ)
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has

Vkk = (β0 + β1xk)γ (6.1)

Vkk′ = 0 k 6= k′

where γ ≥ 0 and β0 and β1 are constrained such that (β0 + β1xk)γ is non-negative over the

range of x values observed.

Note that this model is a specific case of equation 5.1 in which the constants a and b

are equal to β0 and β1, respectively. As our scientific interest lies in β1, the amount of

heteroscedasticity present will depend on the value of the parameter of interest. By setting

the parameter b equal to β1, we note that under the null, β1 = 0, there is no predictor-

variance heteroscedasticity in this model.

In this model, the other parameters β0 and γ will affect the amount of change in het-

eroscedasticity observed for different alternatives. We will therefore consider various effects

of the alternative on the mean-variance relationship controlled by these parameters.

6.2 Power for a Specified Alternative

One potential problem with any mean-variance relationship is appropriate power calcula-

tions, because the mean and the final information are linked. In the model we are consid-

ering, a positive slope (β1 > 0) would lead to lower final information, and therefore less

power than what would be true if the information were the same as under the strong null

hypothesis. Similarly, a negative slope would lead to greater information and therefore

more power than what would be true if the information were the same as under the null.

Properly accounting for this difference in information is the first step toward calculating

correct power in a longitudinal sequential trial with a mean-variance relationship.

The longitudinal nature of the data adds another dimension to the mean-variance rela-

tionship in this setting. As calendar time increases during the study, more measurements

will be made on each subject, which will have increasing x values. With a constant, posi-

tive slope, measurements made at these study times further from randomization are more

variable, and thus the alternative (of β1 > 0) leads to heteroscedasticity while the null

(β0 = 0) does not. Chapter 5 explored the fact that different amounts of heteroscedasticity
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lead to different information growth curves, and here we have a similar situation. Different

alternatives will lead to different information growth patterns, thus leading to a situation in

which the information growth depends on the mean – a mean-information growth (mean-IG)

relationship.

Table 6.1: Distribution of observed study times at each interim analysis under two accrual
scenarios. The proportion of the final amount at each study time is given.

0 1 2 3 4 5

Scenario 1 – 2 year accrual

t1 = 1.75 0.87 0.37 0.00 0.00 0.00 0.00

t2 = 3.5 1.00 1.00 0.75 0.25 0.00 0.00

t3 = 5.25 1.00 1.00 1.00 1.00 0.62 0.12

t4 = 7 1.00 1.00 1.00 1.00 1.00 1.00

Scenario 2 – 5 year accrual

t1 = 4 0.80 0.60 0.40 0.20 0.00 0.00

t2 = 6 1.00 1.00 0.80 0.60 0.40 0.20

t3 = 8 1.00 1.00 1.00 1.00 0.80 0.60

t4 = 10 1.00 1.00 1.00 1.00 1.00 1.00

If using ordinary least squares regression, rather than weighted least squares with effi-

cient, known weights, the problem of a potential lack of independent increments is present

as well. This is problematic for calculating the true power, because, as previously discussed,

the standard methods for integrating the sampling density of a sequential design rely on the

assumption of independent increments. However, the case of a mean-variance relationship

is different than the case of a predictor-variance relationship, because under the strong null

in the mean-variance setting there is no heteroscedasticity, and independent increments will

be true when using ordinary least squares. However, when using ordinary least squares
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under alternatives, there will be a change in the variance of the observations over study

time and thus there is the potential for non-independent increments when using ordinary

least squares regression.

To illustrate the effect of these factors in a group sequential design, we considered two

accrual scenarios. In both scenarios, measurements are made at baseline and then study

times 1-5. In the first scenario, individuals are accrued uniformly over two years so the entire

study takes place over 7 years in calendar time. Four analyses are spaced equally in calendar

time. In the second scenario, individuals are accrued uniformly over 5 years so that accrual

is longer relative to the length of follow up. For this scenario, four analyses are planned at

calendar times 4, 6, 8, and 10. The fraction of total measurements that have been observed

for each study time at the interim analyses under these scenarios are shown in table 6.1. For

the specific case of 100 individuals, γ = 2, and β0 = 10, table 6.2 shows final information

and the information growth under the null (β1 = 0) and a specific alternative β1 = 1. This

comparison shows that under both scenarios, there are differences in the final amount of

information (Inull 6= Ialt) and differences in the growth of the information over time. We

consider the effect of the mean-final information relationship, the mean-information growth

relationship and non-independent increments on the true power under these accrual and

measurement time scenarios and under a variety of different strengths of the mean-variance

relationship.

6.2.1 The Mean-Final Information Relationship

When examining the effect of the mean-final information relationship on the power of a

group sequential design, we note that this issue is not unique to the group sequential set-

ting. Specifically, the standardized z-statistic depends on both the observed value and the

(estimated) standard error of the statistic which in turn depends on the true value of the

parameter.

z =
(θ̂ − θ0)√
V̂ arθ(θ̂)
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Table 6.2: The information growth under the null (β1 = 0) and the alternative (β1 = 1)
using the accrual and analysis time schedule of scenario 1 and scenario 2. The relative
amount of information under the null and the alternative ( Ialt

Inull
) at each analysis is also

given.

Scenario 1 Scenario 2

Analysis Calendar Calendar

Time Time IGnull IGalt
Ialt
Inull

Time IGnull IGalt
Ialt
Inull

1 1.75 0.015 0.021 0.872 4 0.119 0.139 0.723

2 3.5 0.156 0.189 0.749 6 0.500 0.500 0.620

3 5.25 0.550 0.580 0.654 8 0.814 0.814 0.621

4 7 1.000 1.000 0.620 10 1.000 1.000 0.620

However, in most cases with a fixed sample test the sample size is large enough that the

difference in standard error of the statistic under the strong null and under a hypothesized

alternative is small and thus the difference in power due to a mean-variance relationship is

small. However, notable differences in power may be an issue with strong mean-variance

relationships and moderate sample sizes.

The Unadjusted Approach

To illustrate the effects of this potential problem in the group sequential setting, we first

computed stopping boundaries for a fixed number of measurements and analysis times when

assuming no mean-variance relationship. These boundaries are called “unadjusted” and

would suffice if there were no mean-variance relationship. However, if the mean-variance

relationship is as in equation 6.1, the variability of the test statistic increases under a positive

alternative (β1 > 0). Thus, the alternative that was calculated to have a specific power (we

will use 97.5% for illustration) under the assumption of no mean-variance relationship will

no longer have this power in truth. For this unadjusted approach:

• Boundaries are constructed using the true information growth under the null.
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• At each interim analysis, the z-statistic for the interim analysis is compared to the

boundaries constructed during the design phase.

• The alternative with 97.5% power for comparison was calculated from the design that

assumes that the final information and information growth are the same as under

the null and that the covariance matrix of the interim statistics has an independent

increment structure.

Tables 6.3-6.6 show the alternative with assumed 97.5% power when assuming no mean-

variance relationship (“Unadjusted”). These tables also show the empirical power (from

1,000,000 simulated trials) at each of these alternatives. The empirical power was calcu-

lated assuming that the z-scale boundaries derived for the null distribution would be used

throughout. Assuming that the null is as anticipated and that the form of the variance is

correctly specified, use of these boundaries will maintain the type I error rate of the study.

As might be expected, increasing the mean-variance relationship by increasing the γ

parameter increases the effect of ignoring the mean-variance relationship. For example, using

scenario 1, an O’Brien-Fleming design, 100 individuals, and a baseline value of β0 = 10,

at the alternative that has 97.5% power given no mean-variance relationship, we truly

have 96.6% power when γ = 1. If instead γ = 2, at the alternative with 97.5% power

given no mean-variance relationship, we truly have only 88.1% power. Increasing γ to even

more extremes, γ = 2.25, at the alternative with 97.5% power given no mean-variance

relationship, we only have 80.2% power (table 6.3). This decrease in power for a specific

alternative due to the mean-variance relationship is more extreme with smaller sample sizes.

As in the case of fixed sample tests, greater sample sizes reduce the value of the alternative

for which the design has 97.5% power, which in turn reduces the size of the difference in

the variance under the null and under this alternative.

The baseline value of the mean, β0, influences the effect of the mean-variance relationship

on the power as well. In this setting, the impact of the baseline value affects the calculated

alternative, because the lower value of β0 means that the outcome measurements are less

variable and thus the alternative with 97.5% power is smaller. This in turn means that there

is less of a difference in the variance under the null and under the alternative, similar to
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Table 6.3: Alternative believed to have 97.5% under the assumption of no mean-variance
relationship (unadjusted), adjusting for the mean-final information relationship only (mean-
FI) and adjusting for the mean-information growth relationship (mean-IG). The empirical
power of the alternative when using stopping boundaries derived under the null is also
shown.

Scenario 1: β0 = 10, n = 100

Unadjusted Adjusted for Mean-FI Adjusted for Mean-IG

Alt Power Alt Power Alt Power

OBF γ = 1 0.2990 0.9659 0.3104 0.9751 0.3102 0.9750

γ = 2 0.9454 0.8805 1.2762 0.9764 1.2717 0.9758

γ = 2.25 1.2607 0.8021 2.2127 0.9779 2.1963 0.9770

Pocock γ = 1 0.3674 0.9676 0.3846 0.9760 0.3814 0.9746

γ = 2 1.1617 0.8842 1.7214 0.9852 1.5899 0.9764

γ = 2.25 1.5492 0.7943 3.5227 0.9928 2.8759 0.9807

Scenario 1: β0 = 10, n = 500

OBF γ = 1 0.1337 0.9710 0.1359 0.9751 0.1359 0.9750

γ = 2 0.4228 0.9426 0.4751 0.9755 0.4745 0.9752

γ = 2.25 0.5638 0.9192 0.6809 0.9758 0.6794 0.9754

Pocock γ = 1 0.1643 0.9718 0.1677 0.9753 0.1671 0.9747

γ = 2 0.5196 0.9476 0.6019 0.9790 0.5852 0.9749

γ = 2.25 0.6929 0.9247 0.8831 0.9817 0.8417 0.9754
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Table 6.4: Alternative believed to have 97.5% after adjusting for various assumptions and
the empirical power of these alternatives when using stopping boundaries derived under the
null.

Scenario 1: β0 = 30, n = 100

Unadjusted Adjusted for Mean-FI Adjusted for Mean-IG

Alt Power Alt Power Alt Power

OBF γ = 1 0.5178 0.9698 0.5291 0.9751 0.5290 0.9750

γ = 2 2.8362 0.8805 3.8285 0.9764 3.8151 0.9758

γ = 2.25 4.3389 0.7658 8.8834 0.9787 8.7933 0.9778

Pocock γ = 1 0.6363 0.9707 0.6534 0.9754 0.6502 0.9746

γ = 2 3.4852 0.8842 5.1642 0.9852 4.7696 0.9764

γ = 2.25 5.3318 0.7516 16.7941 0.9957 12.0386 0.9836

Scenario 1: β0 = 30, n = 500

OBF γ = 1 0.2316 0.9728 0.2338 0.9750 0.2338 0.9750

γ = 2 1.2683 0.9426 1.4254 0.9755 1.4235 0.9752

γ = 2.25 1.9403 0.9076 2.4246 0.9761 2.4182 0.9756

Pocock γ = 1 0.2846 0.9730 0.2880 0.9751 0.2873 0.9747

γ = 2 1.5587 0.9476 1.8056 0.9790 1.7556 0.9749

γ = 2.25 2.3845 0.9128 3.1839 0.9829 3.0043 0.9757
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Table 6.5: Alternative believed to have 97.5% after adjusting for various assumptions and
the empirical power of these alternatives when using stopping boundaries derived under the
null.

Scenario 2: β0 = 10, n = 100

Unadjusted Adjusted for Mean-FI Adjusted for Mean-IG

Alt Power Alt Power Alt Power

OBF γ = 1 0.3033 0.9654 0.3150 0.9750 0.3150 0.9750

γ = 2 0.9590 0.8767 1.3017 0.9753 1.3012 0.9753

γ = 2.25 1.2789 0.7951 2.2752 0.9758 2.2706 0.9755

Pocock γ = 1 0.3545 0.9658 0.3706 0.9752 0.3695 0.9746

γ = 2 1.1211 0.8680 1.6307 0.9792 1.5840 0.9754

γ = 2.25 1.4950 0.7721 3.2095 0.9837 2.9634 0.9774

Scenario 2: β0 = 10, n = 500

OBF γ = 1 0.1356 0.9709 0.1380 0.9750 0.1380 0.9750

γ = 2 0.4289 0.9416 0.4829 0.9750 0.4829 0.9750

γ = 2.25 0.5719 0.9172 0.6930 0.9751 0.6929 0.9750

Pocock γ = 1 0.1586 0.9710 0.1618 0.9749 0.1615 0.9746

γ = 2 0.5015 0.9409 0.5776 0.9764 0.5718 0.9747

γ = 2.25 0.6688 0.9138 0.8436 0.9777 0.8286 0.9749
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Table 6.6: Alternative believed to have 97.5% after adjusting for various assumptions and
the empirical power of these alternatives when using stopping boundaries derived under the
null.

Scenario 2: β0 = 30, n = 100

Unadjusted Adjusted for Mean-FI Adjusted for Mean-IG

Alt Power Alt Power Alt Power

OBF γ = 1 0.5253 0.9697 0.5369 0.9750 0.5369 0.9750

γ = 2 2.8771 0.8767 3.9052 0.9753 3.9036 0.9753

γ = 2.25 4.4014 0.7575 9.1925 0.9761 9.1605 0.9758

Pocock γ = 1 0.6140 0.9697 0.6299 0.9750 0.6289 0.9747

γ = 2 3.3632 0.8680 4.8920 0.9792 4.7520 0.9754

γ = 2.25 5.1450 0.7285 14.5526 0.9860 12.7464 0.9788

Scenario 2: β0 = 30, n = 500

OBF γ = 1 0.2349 0.9727 0.2372 0.9750 0.2372 0.9750

γ = 2 1.2867 0.9416 1.4488 0.9750 1.4487 0.9750

γ = 2.25 1.9684 0.9049 2.4695 0.9751 2.4689 0.9751

Pocock γ = 1 0.2747 0.9726 0.2779 0.9748 0.2776 0.9747

γ = 2 1.5046 0.9409 1.7329 0.9764 1.7155 0.9747

γ = 2.25 2.3017 0.9003 3.0338 0.9783 2.9682 0.9751
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the effect of the sample size above. However, for the same alternative, the smaller baseline

value would lead to a greater relative change in the variance, which in turn should lead

to greater departures from the assumed power. For example, for scenario 1 with n = 100

and an O’Brien-Fleming design, the alternative assumed to have 97.5% power when γ = 1

and β0 = 10 is 0.303. When β0 = 30, this alternative is 0.525. However, despite the larger

alternative, the effect of ignoring the mean-variance relationship on the power is slightly

smaller when β0 = 30 (power = 97.0%) than when β0 = 10 (power=96.6%), due to the fact

that this alternative is small enough that the relative difference in variance under the null

and alternative when β0 = 30 is small. This trend is seen with γ = 1 under other designs

and scenarios as well. However, when γ is increased to 2.25, the alternative when β0 = 30

is so much larger than when β0 = 10 (e.g. 4.34 vs. 1.28) that the difference in relative

variances under the null and the alternative is now larger when β0 = 30, leading to lower

power compared to the case when β0 = 10 (76.6% vs. 79.5%).

The difference between the Pocock and O’Brien-Fleming designs on the effect of the

mean-final information on the power is similarly two competing processes. For the same

fixed maximal sample size and analysis times, the Pocock design has lower power than

the O’Brien-Fleming design and thus the alternative with 97.5% power is larger, causing a

greater effect of the mean-variance relationship. However, because the Pocock boundaries

are less conservative early, when the difference in the variance of the outcome measures

under the alternative and the null is less extreme, this can lead to the Pocock design

losing less power than would be expected for a fixed value of the alternative. Additionally,

the (incorrect) assumption that the information growth is the same for the null and the

alternative has differential effects on the Pocock and O’Brien-Fleming designs which would

impact the loss of power from assuming no mean-variance relationship as well. The impact

of the incorrectly estimated information growth is discussed in the next section.

The impact of the assumption of no mean-variance relationship is different in the two

accrual scenarios. In order to observe this, we need to consider two designs with similar

alternatives that would have 97.5% power if there were no mean-variance relationship. We

consider the case of β0 = 30, n = 100, and γ = 2. The alternative at which a Pocock

design would have 97.5% power if there were no mean-variance relationship in this setting
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is 3.49 under scenario 1 (table 6.4) and 3.36 under scenario 2 (table 6.6). If there were no

effect of the accrual and timing of analyses, we would expect a greater loss of power under

scenario 1 due to the increased variability of the alternative. However, the true power for

these alternatives is is 88.4% under scenario 1 and 86.9% under scenario 2. Despite the

smaller variance under the scenario 2 alternative, scenario 2 leads to a larger decrease in

power; this difference is is due to differential effects of misspecifying the information growth

for the alternative.

Method of Adjustment

Tables 6.3-6.6 also show the calculated alternative when correcting for the difference in final

information but still assuming a constant information growth and independent increments

(“Adjusted for Mean-FI”).

To account for the mean-final information relationship, methods analogous to those for

a fixed sample test were used. Specifically, the z-statistic critical value with 97.5% power

is used to solve for the alternative θa while accounting for the mean-variance relationship.

The straightforward method is to solve the equation

(z∗)2 =
(θa − θ0)2

V arθa(θ̂)/n
(6.2)

for θa, where the relationship between the V arθa(θ̂) and θa is known (or presumed known).

The value of z∗ is obtained from the group sequential design with information growth as

would be true under the null. If there were no interim analyses, z∗ would be the critical

value from the standard normal distribution; with α = 0.025, it would be equal to 1.96.

However, as discussed in chapter 2, for a sequential design, the sampling density is affected

by the choice of stopping boundaries and thus this critical value is calculated by numerical

integration of the sampling density.

In a group sequential trial, if we assume both that the information growth is constant

for the different alternatives and that an independent increment structure is present, this

adjustment can be done readily with standard software. For this method, we do not change

the boundaries from the “unadjusted” design, we only revise our estimate of the alternative
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for which the design has 97.5% power to account for the mean-variance relationship. We

call this “adjusting for the mean-final information.” For this approach, we have:

• Boundaries are constructed using the true information growth under the null.

• At each interim analysis, the z-statistic for the interim analysis is compared to the

boundaries constructed during the design phase.

• The alternative with 97.5% power for comparison was calculated by solving equa-

tion 6.2 using the z-statistic with 97.5% power from the design under the null as z∗

and the known mean-variance relationship to calculate V arθa(θ̂) at the end of the

study.

As expected, adjusting for the increased variance due to the mean-variance relationship

increases the magnitude of the alternative with 97.5% power. The amount of adjustment

needed depends on the strength of the mean-variance relationship. If there were no addi-

tional problems (i.e. if the assumptions about a constant information growth and indepen-

dent increments under the mean and alternative were true), this adjustment would correctly

calculate the alternative at which the design has 97.5% power. However, despite adjusting

for the effect of the mean-variance relationship on the total information, issues remain with

calculating the correct alternative in this setting, which are discussed in the next section.

6.2.2 The Mean-Information Growth Relationship

In our setting of a longitudinal group sequential trial, a mean-variance relationship will

also impact the information growth. As observed in chapter 5, differences in the amount

of heteroscedasticity lead to different information growth curves (figure 5.1). In the case

of a mean-variance relationship, we have the additional complication that the information

growth will be different under the null and the alternative due to different amounts of

heteroscedasticity in each case (e.g. table 6.2).

In general, with the setting of a positive alternative and a mean-variance relationship

whereby a larger mean generates more variable data, adjusting only for the mean-final
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information will overcorrect the alternative to one with greater than 97.5% power. The

mean-variance relationship in these settings means that the true information fraction grows

faster under the alternative than under the null. This is due to the increasing variance

of measurements later in study time under the alternative, thereby making the fractional

amount of information present at earlier analysis times greater. Once the effect of the mean-

variance relationship on the final information is accounted for in computing an alternative,

assuming the information growth for this alternative is identical to the information growth

under the null is a simple case of underestimating the true information growth.

Chapter 4 illustrated the consequences of overestimating the information growth with

a naive estimate of the information growth in a longitudinal setting. Overestimating the

information growth leads to a loss of power in a two-boundary design with early stopping

for futility. The opposite is true here: Underestimating the information growth leads to an

increase in power due to interim boundaries that are too conservative for the true infor-

mation growth under the alternative. These conservative boundaries increase the power by

reducing the type II error spending at interim analyses without a corresponding increase at

the end of the study. In this way, trials that would have been stopped early for futility under

the correct information growth (as part of the type II error) are not stopped early and may

go on to be declared successes. Thus, the actual empirical power for alternatives calculated

adjusting for the mean-final information relationship have greater than the expected 97.5%

power.

The timing of the analyses and the boundaries used (either O’Brien-Fleming or Pocock)

will have an impact on how much the different information growth curves affect the analysis

times. Differences between the information growths under the null and alternative hypothe-

ses are most pronounced during the middle of the study (e.g. figure 5.1). Therefore, if all

interim analyses were to take place at very early information times or very late information

times, the differences in information growth under the null and the alternative could be less

pronounced, and adjusting only for the effect of the mean-variance relationship on the final

information would likely be adequate to calculate the alternative at which the design has

97.5% power.

Similarly, the conservatism of the boundaries at different analysis times will also impact
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the effect of missestimating the information growth under the alternative. For a fixed

information growth, O’Brien-Fleming boundaries are more conservative at early information

times than are Pocock boundaries. This early conservatism means that even under the

alternative, there is very little possibility of stopping at early analyses for futility. Thus,

underestimating the true information at early analysis times does not have as dramatic an

effect on the power for O’Brien-Fleming designs as it does for Pocock ones.

To see this conclusion from our simulations, it is important to note that the alternatives

are different under O’Brien-Fleming and Pocock designs, and the larger alternatives will

have a greater difference in information growth under the alternative compared to the null.

For example, in scenario 1, with β0 = 10 and n = 100 (table 6.3), the alternative for the

O’Brien-Fleming design with γ = 2.25 is β1 = 2.21, and the alternative for the Pocock

design with γ = 2 is β1 = 1.72. In all respects other than the choice of boundary, the

alternative under O’Brien-Fleming would be expected to have greater departures from the

nominal power level – greater γ values will lead to greater departures in the information

growth and the the greater alternative will also increase the mean-variance relationship.

Yet, the empirical power under O’Brien-Fleming is 97.8%, while it is 98.5% under Pocock

for this scenario.

It is important to note that the number of individuals does not affect the differences

in information growth curves between the null and the alternative because the information

is a scaled multiple of the number of individuals (in our setting with fixed accrual and

measurement times). The differences in power departures at the alternative with assumed

97.5% power seen for different sample sizes is due to the smaller alternative with the larger

sample size reducing the amount of the mean-variance relationship.

Method of Adjustment

To account for the mean-IG relationship in calculating the alternative with 97.5% power,

we again assume that the true form of the mean-variance relationship is exactly known

(or presumed known). Then, instead of simply correcting the calculated z-statistic for the

mean-final information relationship at the end of the study, a search is conducted for the
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alternative that corrects both for the mean-final information relationship and the change

in the information growth with this alternative. As before, boundaries are calculated and

fixed under the null. Then we have:

• Boundaries are constructed using the true information growth under the null.

• At each interim analysis, the z-statistic for the interim analysis is compared to the

boundaries constructed during the design phase.

• The alternative with 97.5% power for comparison was calculated by solving equa-

tion 6.2 as in the adjustment for the mean-final information, but this time uses the

z-statistic with 97.5% power from the design that uses the exact boundaries calculated

above but correctly specifies the information growth under the alternative (θa).

If the alternative yielded independent increments for the covariance matrix of the interim

statistic, this method would yield the alternative with 97.5% power using fixed z-statistic

boundaries under the null.

Tables 6.3-6.6 show the calculated alternative when correcting for the difference in final

information and information growth but still assuming independent increments (“Adjusted

for Mean-IG”). These alternatives are generally less than the alternatives that only adjusted

for the change in final information under the alternative.

6.2.3 Independent Increment Concerns

Finally, we note that correcting for the mean-final information and the mean-information

growth relationship still does not always yield alternatives with exactly 97.5% power. This

difference is due to a violation of the independent increment assumption under the alter-

native. Using weighted least squares, correcting for the mean-final information and mean-

information growth, does yield calculated alternatives with exactly 97.5% power.

As discussed in chapter 5, the degree of departure from independent increments will

depend here on the strength of the mean-variance relationship. However, we note that for

these scenarios, the effect on the nominal power is generally small, even for very strong

mean-variance relationships.
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Method of Adjustment

If the mean-variance relationship were so extreme that adjustment for non-independent

increments were needed, then an adjustment could be accomplished by adding an iterative

step to the search in the adjustment for the mean-information growth relationship. Here,

instead of computing the true power of the alternative by integrating the sampling density

with the true information growth and the exact constraint, we would need to compute the

true power by simulation of data with this alternative and the constrained boundaries.

6.3 Design Properties

Another potential consequence of the mean-variance relationship on the information growth

is on the stopping probabilities at each analysis time under the alternative for given designs.

This in turn leads to different operating characteristics of a design in terms of average sample

size than what would be expected if there were a constant variance.

Even if we correctly calculate the alternative at which there was 97.5% power, this alter-

native may not yield a pattern of stopping probabilities that is expected for the alternative

with 97.5% power under a particular design. In error spending parlance, neither the “type

II error spending” nor the “power spending” functions will behave exactly as would be

expected for a given choice of boundary due to the mean-information growth relationship.

For example, consider the case of an accrual and measurement pattern like that in

scenario 1. Further, let β0 = 10, n = 100, and γ = 2. As seen in table 6.2 the information

growth under the null in this case is π = (0.015, 0.156, 0.550, 1). Using an O’Brien-Fleming

design, and adjusting for the mean-final information relationship, we calculate that the

alternative at which have 97.5% power is β1 = 1.276 (table 6.3). If this alternative had the

same information growth as the information growth under the null, then we would truly

have 97.5% power for this alternative. However, as discussed above, the information growth

under this alternative is slightly faster than the information growth under the null and

as such, using boundaries computed assuming the null information growth, yields slightly

higher power for this alternative.

Using the information growth under the null, properties of the expected O’Brien-Fleming
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design are shown in table 6.7. However, the change in information growth under the alter-

native leads to both a change in the power of this alternative (to 97.6%) and a change in

the stopping probabilities at each analysis time (table 6.8). Here we see the effect of the

underestimated information from the null design on the power and type II error rate for

the alternative with presumed 97.5% power. Under both alternatives, the true probabil-

ity of stopping for efficacy at the third interim analysis is greater than anticipated for an

O’Brien-Fleming design with information growth that is true under the null. This result

is because the efficacy boundary at the third analysis is designed to maintain the type I

error spending at the third analysis for the information growth under the null. Under the

alternative, there is more relative information at the third analysis time. Therefore under

the alternative, the trial is more likely to stop for efficacy at the third analysis than would

occur for an alternative with the same relative information at the third analysis as the null

hypothesis (no mean-IG relationship). Similarly, the alternative is less likely to stop for fu-

tility (type II error) at the third interim analysis as it has more information than expected.

Note that the percent of the type II error spent does not reach 100 because the power for

this alternative is greater than than nominal level using the unadjusted boundaries.

Table 6.7: Probability of stopping (SP) for the null or alternative (with 97.5% power) at
each of the four analyses under the null and the alternative with 97.5% power if there were
no mean-IG relationship, with scenario 1, γ = 2, β0 = 10, and n = 100.

Properties if no Mean-IG Relationship

Null Alternative

Analysis IG % Error SPnull SPalt % Error SPnull SPalt

1 0.015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.156 0.0000 0.0003 0.0000 0.0000 0.0000 0.0003

3 0.550 0.1531 0.6044 0.0038 0.1531 0.0038 0.6045

4 1.000 1.0000 0.3703 0.0212 1.0000 0.0212 0.3703

ASN 523.9 523.9
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Table 6.8: Stopping probabilities at each of the four analyses under alternatives with as-
sumed 97.5% power (accounting for mean-FI) with scenario 1, γ = 2, β0 = 10, and n = 100.

Using Unadjusted Boundaries

Null Alternative

Analysis IG % Error SPnull SPalt IG % Error SPnull SPalt

1 0.015 0.000 0.0000 0.0000 0.023 0.000 0.0000 0.0000

2 0.156 0.000 0.0003 0.0000 0.197 0.000 0.0000 0.0006

3 0.550 0.156 0.6044 0.0039 0.587 0.114 0.0029 0.6417

4 1.000 0.997 0.3704 0.0210 1.000 0.946 0.0208 0.3340

ASN 523.9 519.2

Using Futility-Adjusted Boundary

Null Alternative

Analysis IG % Error SPnull SPalt IG % Error SPnull SPalt

1 0.015 0.000 0.0000 0.0000 0.023 0.000 0.0000 0.0000

2 0.156 0.000 0.0035 0.0000 0.197 0.000 0.0000 0.0006

3 0.550 0.156 0.6703 0.0039 0.587 0.199 0.0050 0.6417

4 1.000 0.998 0.3012 0.0211 1.000 0.987 0.0197 0.3330

ASN 514.7 519.0

6.3.1 Futility-Adjusted Boundaries

Another option in the scenario of a mean-variance relationship is to change the futility

boundary at the design stage to account for the different information growth under an

alternative. As the futility boundary is intended to reject the alternative hypothesis, it

makes sense to modify the futility boundary to account for the information growth under

the alternative and try to recapture some of the intended behavior of the original boundary
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design. To accomplish this goal, we use the constrained boundary approach again. For the

alternative that is adjusted for the mean-final information as above (which corrects for the

mean-variance relationship in the final analysis), we calculate the information growth under

this alternative. We then compute the standard O’Brien-Fleming design for the information

growth under this alternative. The futility boundary from this design is then used with the

efficacy boundary from the design under the null and these boundaries are fixed for all

interim analyses. At the last analysis, the constrained boundary approach is used with

the information growth under the null to ensure that the correct type I error rate will be

maintained.

For this case we have:

• The efficacy boundary is determined using the information growth under the null.

• The futility boundary is determined using the information growth under the alterna-

tive with 97.5% power.

• The boundaries are merged using a constrained boundary approach and the informa-

tion growth under the null to maintain type I error rate.

• At each interim analysis, the z-statistic for the interim analysis is compared to the

boundaries constructed during the design phase.

• The alternative with 97.5% power is the alternative from the design under then null

with 97.5% power after adjusting for the mean-final information relationship.

Boundaries resulting from this approach for the O’Brien-Fleming design in the example

above (scenario 1, β0 = 10, n = 100, and γ = 2) are shown in table 6.9. The faster

information growth under the greater alternative is reflected in stopping boundaries for

futility that are less extreme.

The results from using this futility-adjusted boundary are shown in table 6.8. The design

resulting from this approach does not perfectly recapture the desired type II error spending

from an O’Brien-Fleming design, but it does come closer than the unadjusted boundaries.
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Table 6.9: Sample boundaries using null information growth (unadjusted) and using a
constrained boundary approach to adjust the futility boundary an O’Brien-Fleming design.

Unadjusted Futility-Adjusted

Analysis # a d a d

1 -15.599 16.085 -12.415 16.085

2 -3.446 5.007 -2.701 5.007

3 0.266 2.667 0.450 2.667

4 1.977 1.977 1.970 1.970

Note that this approach also modifies the expected stopping probabilities under the null as

it makes it more likely for the design to stop earlier for futility under the null. This increase

in early stopping for futility results in a lower ASN.

6.4 Confidence Intervals

A final area of concern relating to the mean-variance relationship in this setting is post-trial

inference. We focus here specifically on the construction of confidence intervals, although

the issues are similar for all post-trial inferences that rely on the correct estimation of the

sampling density.

As noted previously, confidence intervals following a group sequential test can be con-

structed by inverting hypothesis tests, such that the the 95% confidence set is given by:

CI{(M,S) = (m, s)} =
{
θ :

α

2
≤ P ((M,S) ≤ (m, s)|θ) ≤ 1− α

2

}
(6.3)

The difficulty in the mean-variance setting is the correct estimation of the sampling

density as it changes under each potential value of θ. As explored above, the mean-variance

relationship can affect the sampling density through (a) the mean-final information rela-

tionship, (b) the mean-information growth relationship and (c) the lack of independent

increments if using ordinary least squares instead of weighted least squares.
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6.4.1 Simulated Quantile Method

To combat all three of these issues, we use a simulated quantile method for constructing

confidence intervals. This method will be robust to all three potential issues above, but

does require knowledge of the mean-variance relationship. Conceptually, the simulated

quantile approach generates an empirical version of the sampling density over a broad

range of possible values of θ. Based on the sampling density under a particular value of

θ, quantiles of the observed statistic θ̂ are calculated. For 95% confidence intervals under

the sample mean and analysis time order, we calculate the 2.5% and 97.5% quantiles under

each ordering.

Ideally, the relevant quantiles could be simulated for all possible values of θ, however

clearly this is both theoretically and practically impossible. Instead, we chose θ values at

regular intervals and used a loess smoother to extrapolate the quantiles to all values of θ

(see figure 6.1 for an example using an O’Brien-Fleming design with scenario 1, β0 = 10,

n = 100, and γ = 2). An ad hoc adjustment was made to calculate more values where

the transition from stopping at one analysis time to the next occurred. The location of

this transition is critically important for the analysis time ordering and is a place of a large

amount of change on the sample mean scale as well. By choosing more values of θ in the

intervals in which such jumps occurred, the exact value of θ for which the quantile occurred

at a new stopping time could be more precisely determined.

Once the quantile smoothers are well-estimated, confidence intervals can be determined

based on a particular observed value (m, θ̂). At any particular observed value, the confidence

set includes all values of θ for which the observed value would not be unusual (i.e. the

observed value was greater than the 2.5 percentile but less than the 97.5 percentile of all

observed values for that value of θ). Figure 6.1 provides an illustration of this method using

the sample mean ordering. If the value observed were θ̂ = 0.5 and the trial stopped for

efficacy at the final analysis (m=4), the dashed line represents the observed value. The

values of θ that are included in the confidence set are those in which the observed value of θ̂

is between the two quantiles. In this case, the bottom of the confidence interval is the value

of θ for which the 97.5 percentile is equal to the observed value. This is seen as when the
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horizontal line crosses the line showing the 97.5 percentile as a function of the true value

of the slope. The upper limit of the confidence interval is the value of θ for which the 2.5

percentile is equal to the observed value, which is observed when our horizontal line for the

observed value crosses the line showing the 2.5 percentile as a function of the true value.

The situation is analogous for the analysis time ordering, except that in this case less than

and greater than are defined both as a function of the observed slope value and when the

trial would be stopped.
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Figure 6.1: Plot illustrating the construction of confidence intervals under the sample mean
ordering. The lines are the empirical 2.5% and 97.5% quantiles for various true values of
the slope parameter.

The simulated quantile method for constructing confidence sets should provide appro-

priate coverage provided the quantiles can be well simulated, both by knowing the mean-

variance relationship and by simulating the quantiles at enough true values of θ. We com-

pared this method to three approaches:
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Table 6.10: Empirical coverage probabilities (Cov.) and average length (Len.) of nominal
95% confidence intervals under the null and alternative with true 97.5% power. Scenario 1
with an O’Brien-Fleming design was used, with β0 = 10, n = 100, and γ = 2.

Under the Null β1 = 0 Under Alternative β1 = 1.27

Mean Order Time Order Mean Order Time Order

Cov. Len. Cov. Len. Cov. Len. Cov. Len.

Unadjusted 0.958 1.17 0.958 1.19 0.842 1.23 0.842 1.22

Adjusting for Mean-FI 0.950 1.14 0.950 1.16 0.952 1.60 0.952 1.63

Adjusting for Mean-IG 0.952 1.15 0.952 1.17 0.950 1.57 0.950 1.58

Simulated Quantiles 0.959 1.18 0.958 1.25 0.940 1.49 0.946 1.69

• The naive approach which makes no adjustments for a mean-variance relationship and

simply uses the sampling density as calculated under independent increments and no

mean-variance relationship.

• An adjusted mean-final information approach which recalculated the sampling density

using the final information that would be true for the observed slope at the end of the

study.

• An adjusted mean-information growth approach which further adjusted the sampling

density for the true information growth that would have been seen using the observed

slope.

For illustration, we used scenario 1, with β0 = 10, n = 100, and γ = 2. Under the null,

when everything is correctly specified, the methods perform similarly (table 6.10).

However, under the alternative with 97.5% power, the unadjusted (naive) method per-

forms poorly, with only 84.2% coverage. This result is directly attributable to continuing

to assume the variance that was constant under the null, thereby failing to produce wider

confidence intervals to account for the increased variability of the parameter under the alter-
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native. Adjusting for the mean-final information relationship produces acceptable coverage

in this circumstance.
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Chapter 7

CORRELATED DATA

Finally, we consider the case of correlated data and its impact on standard methods for

sequential clinical trials. We consider correlated data both when the data are homoscedastic

and when the data are heteroscedastic.

As mentioned previously, we are considering the case in which the estimation of the

slope parameter from the marginal model (using GEE) is the primary statistic of interest.

The variance of the statistic from the GEE model is given by:

V ar(β̂) = (XTW−1X)−1XTW−1VW−1X(XTW−1X)−1 (7.1)

where W is the “working” covariance and V is the covariance matrix of the observed values.

7.1 Model

In this case our standard model,

E(Y |x) =µ

=β01 + β1x

Cov(Yi) =σ2V (µ)

has

Vkk = (β0 + β1xk)γ (7.2)

Vkk′ = ρkk′ ∗
√
VkkVk′k′ k 6= k′

where γ ≥ 0 and β0 and β1 are constrained such that (β0 + β1xk)γ is non-negative over the

range of x values observed.

Note that this model uses the same approach to possible heteroscedasticity due to a

mean-variance relationship as in equation 6.1. It includes now the possibility for correlation

between observation made on the same subject j.
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We will consider two forms of the correlation structure, exchangeable, in which the

correlation is the same on all measurements made on the same individual (ρkk′ = ρ), and

auto-regressive of order 1 (AR(1)), in which the correlation decreases for measurements

made further apart in study time (ρkk′ = ρ|xk−xk′ |).

7.2 Using Weighted Least Squares (Efficient, Known Weights)

As was the case with heteroscedastic data, using weighted least squares, with known, correct

weight matrix (W ∝ V ar(Y )), will be the most efficient among all linear unbiased estimators

in this setting by the Gauss-Markov theorem. When using the correct weights such that

W ∝ V ar(Y ), the best linear unbiased estimator (BLUE) is β̂w = (XTW−1X)−1XTW−1Y .

Because this estimator is efficient, the independent increment structure will hold and this

situation is again similar to the case of independent longitudinal data.

However, even when using WLS with known weights, the information growth will be

different for different amounts of correlation and different amounts of heteroscedasticity.

We saw in chapter 5 that the amount of heteroscedasticity can impact the information

growth, even when using the efficient weights. Heteroscedasticity will have a similar effect

here, and the magnitude of the correlation will also impact the information growth.

As noted previously, the variance of the weighted least squares estimator is given by:

V ar(β̂) = (XTW−1X)−1 (7.3)

Let wim denote the element in the iih row and the mth column of the matrix W−1. In the

case of simple linear regression we then have:

V ar(β̂) =(XTW−1X)−1

=

 ∑m

∑
iwim

∑
m

∑
i xiwim∑

m

∑
i xiwim

∑
m

∑
i xiwimxm

−1
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Then, focusing only on the slope parameter, we have:

V ar(β̂1) =
∑

m

∑
iwim

(
∑

m

∑
iwim)(

∑
m

∑
i xiwimxm)− (

∑
m

∑
i xiwim)2

=
1∑

m

∑
iwim(xi − x̄w)(xm − x̄w)

(7.4)

where x̄w =
P

m

P
i xiwimP

m

P
i wim

.

Thus, the relative amount of information at analysis time tj relative to the final analysis

tJ is given by:

πj =

nj∑
m

nj∑
i

wim(tj)(xi − x̄w)(xm − x̄w)

nJ∑
m

nJ∑
i

wim(tJ)(xi − x̄w)(xm − x̄w)

(7.5)

From this equation, it is straightforward to observe that the information growth using

the efficient, known weights will depend on the weights (the components of the matrix

W−1). These weights in turn depend on the amount of heteroscedasticity and the correlation

parameters and structure – the values of W−1 = (V ar(Y ))−1.

7.2.1 No Heteroscedasticity

If there is no heteroscedasticity (so vkk = σ2, for all k), then the information growth curves

for the same measurement schedule and accrual pattern differ only with respect to the

correlation. For illustration, we use scenario 1 and scenario 2 as described previously.

Figure 7.1 shows the true information growth curves when using WLS under various

combinations of correlation structure and values. For the case of shorter accrual relative to

follow up (scenario 1), the exchangeable information growth is very close to the information

growth true when there is no correlation. This outcome is intuitively reasonable by noting

that if the design is completely balanced at both analyses, then the relative amount of

information is the same in the independent and the exchangeable case. However, if the

design is not balanced at both analysis times, the fractional information for the exchangeable
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case will be lower than for the independent, because future measurements will also be highly

correlated with existing measurements, contributing to a larger percentage of information

gained in the exchangeable case.

In contrast, the information growth with a true AR(1) structure is always above the

information growth for independent data. This result is primarily due to the change in

final information when the data have an AR(1) structure. In early analyses, data with an

AR(1) structure will closely resemble an exchangeable structure (and is trivially true if there

are only two measurements available on each individual). Thus the information at early

analysis times is similar between data with an AR(1) structure and with an exchangeable

one. However, by the final analysis, the information for data with an AR(1) structure will

be less than the information for data with an exchangeable one, because of the decreased

correlation of measurements further in study time. This difference in final information

between the exchangeable and AR(1) cases means that the relative information at early

analysis times is larger in the case of AR(1) data – at early analysis times a similar amount

of information is present between exchangeable and AR(1) data, but this represents a larger

fraction of the final information when the data have an AR(1) structure .

With both correlation structures, the information growth curves are most similar to the

one under independence with smaller correlation values. In the case of exchangeable data,

assuming the information growth under independent data will result in greater overestima-

tion of the information growth with larger values of ρ. Likewise, with AR(1) data, assuming

the information growth under independent data will result in greater underestimation of the

truth with larger values of ρ (figure 7.1).

7.2.2 Heteroscedasticity

If the data are not only correlated but also heteroscedastic, then the information growth will

again differ by the magnitude and structure of the correlation. We saw in chapter 5 that the

true information growth using WLS with independent data differed by the amount of het-

eroscedasticity due to the parameter γ. We return to that issue here with heteroscedasticity

due to a predictor-mean relationship as per equation 5.1.
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Figure 7.1: True information growth using weighted least squares with no heteroscedasticity
but various amounts of correlation.

In the case of heteroscedasticity, both the exchangeable and the AR(1) correlation struc-

tures generally lead to information growth that is faster than that for independent data.

Here the increased correlation at the earlier (less variable) measurement times contributes

more to the overall information in both the exchangeable and AR(1) case. Thus, the infor-

mation growth early in the study is higher for higher values of the correlation parameter

for both structures.

Figures 7.2 and 7.3 show information growth curves for a dramatic predictor-variance

relationship (a = 1, b = 1). The case in which γ = 2 (figure 7.3) hints at the limiting

case for the information growth using WLS. With ρ = 0.9, the information growth curve

increases rapidly and then levels off. For example, with ρ = 0.9, γ = 2 and exchangeable

data in scenario 2 the fraction of information present when the calendar time is equal to

6 is 0.93, even though this is only 60% of the way through the study in calendar time

(figure 7.3). This leveling off is due to significantly downweighting new measured values

that are further in study time and greater in variability. In the extreme case with WLS, the
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contribution to the slope of the new, more variable measurement would be nothing and the

corresponding increase in the information would also be nothing, leading to an information

growth curve that reached 1 before the end of the study. Such a situation is unlikely to

occur in practice, as it would require dramatically more variable measurements at the end

of the study compared to the beginning and high correlation among measurements.

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scenario 1

Time

F
ra

ct
io

n 
of

 In
fo

rm
at

io
n

●

●

●

●

●

●

Indepedent
Exchangeable
AR(1)

●

ρ = 0.3
ρ = 0.6
ρ = 0.9

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scenario 2

Time

F
ra

ct
io

n 
of

 In
fo

rm
at

io
n

●

●

●

●

●

●

Indepedent
Exchangeable
AR(1)

●

ρ = 0.3
ρ = 0.6
ρ = 0.9

Figure 7.2: True information growth using weighted least squares with heteroscedasticity
(γ = 1, a = 1, b = 1), and various amounts of correlation.

7.2.3 Consequences for Sequential Designs

As noted previously, using WLS with efficient, known weights will ensure that the indepen-

dent increment assumption will hold and that the information growth will be monotonic.

However, some care must be taken due to the dependence of the information growth on the

correlation parameters and correlation structure, and due as well to possible heteroscedas-

ticity from a predictor-variance relationship. If a study were planned assuming a different

correlation parameter and predictor-variance relationship, then the true information growth

would be different than what was planned, and the final inference should be adjusted for
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Figure 7.3: True information growth using weighted least squares with heteroscedasticity
(γ = 2, a = 1, b = 1), and various amounts of correlation.

the best estimate of the information growth at the final analysis with the use of constrained

boundaries, as discussed previously.

It is worth noting here that although the above results from weighted least squares

assumed a known form of the covariance matrix, the results will hold asymptotically for

GEE with a correctly specified working covariance matrix (both in the correlation and the

possible heteroscedasticity), provided that the sample size is such that the parameters of

the working covariance matrix can be estimated consistently. In this case, W →p V and the

above results will hold. We note that even in this case, the effect of the correlation on the

information growth is still important, as the form of the correlation (AR(1), exchangeable,

etc.) may be correctly specified in advance, but the parameter ρ need not be (but can be

estimated from the data).
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7.3 Using GEE with any Working Covariance

We now turn more generally to using GEE when the form of the working covariance matrix

does not match the true covariance matrix exactly. For any choice of working covariance

matrix, W , we can correctly specify the form of the true variance of the slope parameter.

From equation 7.1, we have:

V ar(β̂) = (XTW−1X)−1XTW−1VW−1X(XTW−1X)−1

Let wim denote the elements of the inverse of the working covariance matrix W−1 and vim

denote the elements of the true covariance matrix V . Further, let w∗im denote elements from

the matrix W−1VW−1. Then, we have that the V ar(β̂) is equal to:

 ∑∑
wim

∑∑
xiwim∑∑

xiwim
∑∑

xiwimxm

−1  ∑∑
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Then, focusing only on the slope parameter, we have:

V ar(β̂1) =
(

1
((
∑

m

∑
iwim)(

∑
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i xiwimxm)− (

∑
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∑
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∑
m

∑
i

xmw
∗
im)
}

This equation can then be expanded into two parts; a first term that represents the

minimal variance from the efficient estimator if the working covariance were correctly spec-

ified (if V ar(Y ) = W so that w∗im = wim, for all i,m), and a second term from using the

nonefficient weights. We let V ar(β̂1eff∗) denote the variance of the estimated slope if the

weights that were used were efficient – if V ar(Y ) = W – and note that this variance is given

by equation 7.4.



105

V ar(β̂1) =
(

1
((
∑

m

∑
iwim)(

∑
m

∑
i xiwimxm)− (

∑
m

∑
i xiwim)2)

)2

×{
(
∑
m

∑
i

xmwim)2
∑
m

∑
i

(wim + w∗im − wim) + (
∑
m

∑
i

wim)2
∑
m

∑
i

xm(wim + w∗im − wim)xi

− 2(
∑
m

∑
i

wim)(
∑
m

∑
i

xmwim)(
∑
m

∑
i

xm(wim + w∗im − wim))
}

=V ar(β̂1eff∗) +
(

1
((
∑

m

∑
iwim)(

∑
m

∑
i xiwimxm)− (

∑
m

∑
i xiwim)2)

)2

×{
(
∑
m

∑
i

xmwim)2
∑
m

∑
i

(w∗im − wim) + (
∑
m

∑
i

wim)2
∑
m

∑
i

xm(w∗im − wim)xi

− 2(
∑
m

∑
i

wim)(
∑
m

∑
i

xmwim)(
∑
m

∑
i

xm(w∗im − wim))
}

Note that the first term is not the variance of the efficient estimator for the true data

being estimated (with var(Y ) = V ), but is the efficient estimate if the true data were such

that V ar(Y ) = W . Nevertheless, by separating the variance of our estimate in this way,

we can see that the term that may lead to non-independent increments and nonmonotonic

information growth is the second term in the equation; if the second term were zero, then the

first term would be that from the efficient estimator and therefore must have independent

increments and grow monotonically.

7.4 Using GEE with Homoscedastic Data

This section considers the case of homoscedastic data, in which only the correlation structure

can be misspecified. Focusing on this case, and assuming that the constant variance can

be appropriately estimated, means that the w∗im − wim terms above must be between -1

and 1, because the constant σ2 = vii can be removed from the terms of the matrices W−1

and W−1VW−1. We are most interested in the consequences of using GEE with working

independence for reasons noted previously; using working independence will always produce

a consistent estimate and will never have convergence issues. If we let W = σ2I, and

simplify the notation by removing the σ2 terms as noted earlier, we have wim = 1 if i = m

and wim = 0 otherwise. These changes lead to the following formula for the variance of the
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estimate of β̂1 when using working independence:

V ar(β̂1) =V ar(β̂1eff∗) +
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(7.6)

Noting that the V ar(β̂1eff∗) estimate in this case includes the terms missing from the

sums (i.e. when i = m), we can rewrite this formula as:

V ar(β̂1) =
(
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(7.7)

We note that if the data are truly exchangeable, then Vn×n = (1− ρ)In×n + ρ1n×n and

equation 7.7 becomes:

V ar(β̂1) =
(

1
(nV ar(x))

)2
∑

i

1 ∗ (xi − x̄)(xi − x̄) + ρ
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(xi − x̄) ∗ 1vim 6=0


If the design is balanced, then

∑
i(xi − x̄) ∗ 1vim 6=0 = 0, and the above becomes:

V ar(β̂1) =
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)2
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1 ∗ (xi − x̄)(xi − x̄)− ρ
∑
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=
(1− ρ)
nV ar(x)

7.4.1 Non-Independent Increments

As with any inefficient estimator, we are concerned about non-independent increments. In

the case of GEE with homoscedastic data, and using an independent working covariance

matrix, the degree of dependence will vary based on the timing of the analyses and on the

amount and structure of the correlation.



107

As in section 5.3.1, we assess departures from independent increments on two metrics:

the relative departures and the linear trend of the final analysis with the previous interim

analyses. The impact of non-independent increments was assessed by comparing the nomi-

nal type I error rate and power using the standard sequential methods with the results from

simulating trials with non-independent increments and using the boundaries developed un-

der the assumption of independent increments. We evaluate the power at the alternative

that would have 97.5% power if the independent increment assumption were true. To sum-

marize, for each scenario we construct a design such that:

• Boundaries are constructed using the true information growth for the scenario but

assuming independent increments. (So the diagonal of the covariance matrix of the

interim statistics is specified correctly, but the off-diagonal elements are not.)

• At each interim analysis, the z-statistic for the interim analysis is compared to the

boundaries constructed during the design phase.

• The alternative with 97.5% power for comparison was calculated from the design that

assumes independent increments.

The design is evaluated at both the null and the alternative by simulating values of the

interim statistics from the true covariance matrix for the interim statistic (that may not

have independent increments). If independent increments were true, all of the designs would

have a type I error rate of 0.025 and 97.5% power for the specified alternative.

Table 7.1 shows the departures from independent increments for both exchangeable and

AR(1) true correlations when using GEE with working independence and homoscedastic

data. Even somewhat large departures from independent increments on the relative scale

do not lead to dramatic differences in the type I or type II error rates from the nominal

levels. As before, under this scenario with an early interim analysis, the Pocock design

is slightly more susceptible to departures from independent increments than the O’Brien-

Fleming design due to higher stopping probabilities at the earliest analyses (greater error

spent).
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We also note from this table that the linear trend in departures metric with exchangeable

data reflects no departures from independent increments because the final analysis has a

balanced design and is thus efficient. However, the complete covariance matrix of the interim

statistics does not have the complete independent increment structure and thus this metric

does not adequately reflect departures from independent increments with exchangeable data.

Practical Considerations

For future studies, we investigate when non-independent increments may be of practical

concern. To explore the effect of the timing of the interim analyses and the accrual pattern

on possible non-independent increments, we consider a scenario in which every individual

will have four measurements made (at equally spaced study times 0-3). We assume that

an interim analysis will be conducted before a fourth measurement is obtained on any

individual (at time tj which is fixed), and we will calculate the covariance of the statistic

from this analysis with the statistic from an interim analysis after we have the fourth

measurement on a fraction of individuals (at time tk, which will vary). To assess departures

from independent increments in this setting, we used a modified relative departures approach

and use log(Cov(β̂1j ,β̂1k)

V ar(β̂1k)
, so positive values indicate greater than expected covariance and

negative values indicate less than expected covariance. We consider three different accrual

patterns: (a) fast, such that all individuals had a third measurement before anyone had a

fourth, (b) medium, such that two-thirds of the individuals had a third measurement before

the first individual had the fourth, and (c) slow, such that only one-third of the individuals

had a third measurement before the first individual had a fourth. Table 7.2 shows the

fraction of individuals with measurements at each study time at the fixed analysis tj and

at two possible interim analysis times.

Figures 7.4 and 7.5 show how the amount of covariance between the statistics at two

interim analyses varies as a function of the correlation of the data, timing of the interim

analyses, and the accrual pattern. In these plots, very slight departures are observed in all

cases when the correlation between measurements is less than 0.6. When the correlation

is higher than 0.6, fast accrual (all individuals have a third measurement before anyone
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Table 7.1: Empirical type I error rate and power at the alternative which has 97.5% under an
independent increment structure, when using an independence working covariance matrix
with GEE and homoscedastic data. The relative and linear departures from independent
increments are as in equations 5.7 and 5.8, respectively.

Scenario 1

Relative Linear OBF Pocock

True Correlation Ind. Inc. Ind. Inc. SPnull SPalt SPnull SPalt

Exchangeable ρ = 0.3 0.5903 0.0000 0.0250 0.9750 0.0249 0.9748

ρ = 0.6 1.5971 0.0000 0.0250 0.9751 0.0245 0.9753

ρ = 0.9 3.7219 0.0000 0.0251 0.9749 0.0232 0.9766

AR(1) ρ = 0.3 0.9541 0.1553 0.0249 0.9749 0.0250 0.9748

ρ = 0.6 1.0567 0.1781 0.0250 0.9750 0.0249 0.9750

ρ = 0.9 2.0365 0.1290 0.0249 0.9750 0.0240 0.9758

Scenario 2

Exchangeable ρ = 0.3 0.2090 0.0000 0.0250 0.9749 0.0248 0.9751

ρ = 0.6 0.4979 0.0000 0.0249 0.9750 0.0240 0.9758

ρ = 0.9 0.9986 0.0000 0.0250 0.9749 0.0229 0.9769

AR(1) ρ = 0.3 0.1890 0.0214 0.0250 0.9750 0.0251 0.9749

ρ = 0.6 0.3009 0.0248 0.0249 0.9750 0.0247 0.9752

ρ = 0.9 0.6385 0.0180 0.0250 0.9749 0.0235 0.9763
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Table 7.2: Distribution of observed study times at possible interim analysis times under
fast, medium, and slow accrual. The proportion of the final amount at each study time is
given.

Fraction with 4th Study time=0 1 2 3

Fast Accrual (all have third before anyone has fourth)

0 (tj) 1 1 1 0

0.33 1 1 1 0.33

0.66 1 1 1 0.66

Medium Accrual (2/3 have third before anyone has fourth)

0 (tj) 1 1 0.66 0

0.33 1 1 1 0.33

0.66 1 1 1 0.66

Slow Accrual (1/3 have third before anyone has fourth)

0 (tj) 1 0.66 0.33 0

0.33 1 1 0.66 0.33

0.66 1 1 1 0.66
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gets a fourth) and interim analyses scheduled in places where there is not balance can lead

to a large amount of deviation from the independent increment structure, particularly if

the data are truly exchangeable (figure 7.4). If the data are truly AR(1), the departures

from independent increments are not as extreme, even with very high correlation between

measurements on the same individual (figure 7.5).

7.4.2 Nonmonotonic Information Growth

As is the case with heteroscedastic, independent data, it is possible to have nonmonotonic

information growth when using OLS (or estimates that match OLS, such as GEE with an

independent working covariance matrix).

For analysis times tj and tk with j < k, we use equation 7.7 and get:

V ar(β̂1k)

V ar(β̂1j)
=

(
1

(nkV ark(x))

)2
(
∑nk

m

∑nk
i vim(xi − x̄k)(xm − x̄k))(

1
(njV arj(x))

)2 (∑nj
m

∑nj

i vim(xi − x̄j)(xm − x̄j)
)

=
(
njV arj(x)
nkV ark(x)

)2(∑nk
m

∑nk
i vim(xi − x̄k)(xm − x̄k)∑nj

m

∑nj

i vim(xi − x̄j)(xm − x̄j)

)
(7.8)

From this equation, it is clear that the first term involving nj , nk, and the variances of

the predictor space at each analysis time must be less than 1. Therefore the information will

be increasing if the correlation terms were all 0. However, there is no such guarantee with

the term on the right side. Adding measurements that disrupt the balance noted previously

with exchangeable data, for instance, could lead the top term to be larger than the bottom

and thus could result in nonmonotonic information growth if the correlation were sufficient

to do so.

Intuition might suggest that the reason for this possible absolute inefficiency is due to

the weighting on the measurements when determining the estimate of β̂. For example, we

noted previously that if an independence working covariance matrix is used, the estimate of

β̂1 will match exactly the estimate that would have been obtained through OLS regression

ignoring the correlation within an individual. When all individuals have the same number of
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measurements at the same time points from randomization, all subjects are weighted equally

and this balance does not generally result in a great loss of efficiency; when such balance is

present and the data are exchangeable, it is equal to the efficient estimator. However, the

independence working covariance weighting is not efficient when a few individuals have more

measurements than the others. Compared to the case of all independent measurements, the

line that is fit with just two observations on each subject when those observations are

highly correlated is much less variable (there is a gain in information due to the positive

correlation within an individual). If only a handful of these highly correlated subjects have

measurements at a more extreme time point, then these subjects have greater influence

on the slope (as if they were new, independent measurements), and the variability of the

slope increases due to chance selection of different measurements over hypothetical repeated

experiments. The potential influence of these new data points can actually increase the

true variability of the slope, unless the correlation with other measurements is properly

accounted for by downweighting the additional observations (using the working covariance

matrix) relative to the weights that would be used in OLS regression.

We first explore an extreme scenario that could lead to nonmonotonic information

growth. For this scenario, the true effect is linear, the data are homoscedastic, and the

correlation within individuals is high. For our particular example, 10 measurements are

made on each individual, one at baseline, and one at each of nine follow-up times. The

accrual occurs over the first two months. For an example of high within individual correla-

tion, we chose an AR(1) structure with ρ = 0.95. In an attempt to make the exchangeable

correlation structure as equivalent as possible, ρ for the exchangeable case was chosen such

that the average correlation between all pairs of measurements on an individual at the end

of the study would be equal to that in the AR(1) structure (ρ = 0.8338). Finally, to ensure

comparability, the number of individuals in the AR(1) case was increased such that the final

amount of statistical information was equivalent between the AR(1) and exchangeable cases

(2170 and 500 individuals, respectively). Four working covariance matrices were used in each

simulation: independence, exchangeable, AR(1), and unstructured. These simulations were

done using the geepack package in R (Yan and Fine, 2004).

We choose to include the “unstructured” working covariance matrix as well, because
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Figure 7.6: Plot illustrating information growth over time using GEE when the data are
truly linear. The true correlation structure is either exchangeable or AR(1) and the plots
show the information growth using each of four working covariance matrices. The scaled
graphs show the true information growth relative to the amount of information when the
working covariance matrix is exactly specified.
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some authors (Gange and DeMets, 1996) have suggested the use of an “unstructured”

working covariance matrix with GEE to provide nearly efficient estimation without pre-

specifying the form of the working covariance. Others have suggested that using a working

covariance matrix with consistently estimated parameters (even if misspecified) will lead

to nearly independent increments (Lee et al., 1996), suggesting that any choice of working

covariance will lead to monotonic information growth.

Figure 7.6 shows the true information growth curves in our example. The plots demon-

strate the nonmonotonic information growth when using an independence working covari-

ance matrix in this setting. The scaled plots show the relative loss of efficiency compared to

using the correctly specified form of the working covariance matrix. In this example, using

an exchangeable working covariance matrix appears to be most desirable; it does lose some

efficiency relative to using AR(1) when the truth is AR(1) (relative efficiency = 89%), but

does not become nonmonotonic. In contrast, when the true data are exchangeable, using a

working AR(1) structure leads to a dramatic drop in efficiency (relative efficiency = 50%).

Using an “unstructured” working covariance matrix does lead to nearly efficient estima-

tion when the design is balanced (when all subjects have equal numbers of measurements),

however, it performs poorly when the design is markedly unbalanced, yielding results similar

to those using an independence working covariance matrix (figure 7.6 ). When the design

is unbalanced, some estimated parameters in the working covariance structure are quite

variable because there are only a few observations contributing to those estimates. For this

reason, using the unstructured working covariance can lead to many of the same problems

as using the independence working covariance, which suggests that in this circumstance the

use of the exchangeable working covariance matrix would be preferred. In addition, in a

small number of simulations (approximately 3%) using an unstructured working correlation

matrix meant that the GEE estimates did not converge. These cases were excluded from

our estimates, and hence the graphs do not reflect another practical difficulty of using an

unstructured working covariance matrix in the setting of a group sequential clinical trial.

As might be expected, the degree of correlation within measurements on the same indi-

vidual affects the true information growth when using an independence working covariance

matrix (figure 7.7). When the true data are exchangeable with low correlation (ρ = 0.3)
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and the same study design as before (2 month accrual, 10 measurements per individual),

the information growth is nearly the same between the exchangeable and independence

working covariance matrices (figure 7.7A). As the correlation increases, using working inde-

pendence becomes less efficient at interim points in the trial and can lead to nonmonotonic

information growth (figure 7.7: A-C).
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Figure 7.7: Plots illustrating the effect of the within individual correlation and the accrual
pattern on the information growth over time using GEE. In all cases, the data are truly linear
the covariance within individuals has an exchangeable structure, and 10 measurements are
made on each individual (at baseline and months 1-9). For plots A-C, accrual was fixed at
2 months and for plots D-F the correlation was fixed at ρ = 0.8338.

When the design is completely balanced (as might occur at the end of a study with no

dropouts), the estimates using independence and exchangeable working covariance matrices

are the same. Such balance may also be achieved during a study if the accrual period is
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shorter than the time between consecutive measurements on an individual. In our example

where individuals are measured every month, this circumstance would occur if everyone were

accrued within one month (e.g., every individual has a first measurement before anyone has

a second as in figure 7.7D). However, when the design is far from balanced (as might occur

during a long accrual period), working independence will be noticeably less efficient than

exchangeable at interim points in the study when the true data are exchangeable (e.g.

figure 7.7F).

A long accrual period when using an independence working covariance matrix leads

to relative inefficiency, but does not tend to lead to noticeable nonmonotonic information

growth. Nonmonotonicity is most pronounced when the accrual period is short relative

to the follow up on each individual and if the correlation within an individual is high

(figure 7.7D). Consider a case of high within subject correlation (ρ = 0.8338) and short

accrual (so that all individuals have two measurements before anyone has a third). In this

situation, the amount of statistical information decreases when the first individual gets at

third measurement, and continues to decrease until slightly more than 10% of the study

population has a third measurement. The amount of information present when everyone

had two measurements but no one had a third is not surpassed until more than 50% of the

new third measurements are obtained. This result becomes even more striking as the study

continues. When everyone has nine measurements but no one yet has ten, the amount

of statistical information decreases when the first person gets a tenth measurement and

continues to decrease until approximately 30% have a tenth measurement. The amount of

information is not greater than the amount when no one had a tenth until 70% have a tenth

measurement.

Practical Considerations

As was the case with non-independent increments, we are concerned about when nonmono-

tonic information growth might occur in practice. We noted above the potential effects of

the magnitude of the correlation within individuals and the timing of the analyses relative

to the accrual pattern. To explore these effects more fully, we again consider a scenario in
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which every individual will have four measurements made (at equally spaced study times

0-3), as we did when exploring possible non-independent increments. We assume that an in-

terim analysis will be conducted before a fourth measurement is obtained on any individual

(at time tj which is fixed), and calculate the relative information of the statistic from this

analysis with the statistic from an interim analysis after we have the fourth measurement

on a fraction of individuals (at time tk, which we will vary). We transform this ratio to a log

scale for ease of illustration and plot (log( V ar(β̂1j)

V ar(β̂1k)
), so negative values indicate nonmono-

tonic “information.” As with our exploration of non-independent increments, we consider

three different accrual patterns as seen in table 7.2.

Figures 7.8 and 7.9 show places in which an interim analysis occurring later in calendar

time leads to a more variable estimate of the slope. Such nonmonotonic information occurs

when the correlation is high (> 0.6), when accrual is fast, and when interim analyses are

spaced close together.

7.5 GEE with Heteroscedasticity

We now allow for the possibility of heteroscedasticity among the observed data as well,

either through a predictor-variance or a mean-variance relationship. In this case, the form

of the variance does not simplify as it did with homoscedastic data. Using an independent

working covariance matrix with heteroscedastic, correlated data, can lead to non indepen-

dent increments and nonmonotonic information growth due to both the correlated data (as

described above) and the heteroscedasticity (as described in chap 5). We are then partic-

ularly interested in the interaction between the two, namely how heteroscedasticity affects

the potential non independent increments and nonmonotonic information growth due to

using an independent working covariance matrix with correlation data.

7.5.1 Not accounting for heteroscedasticity

Table 7.3 shows the relative and linear departures from independent increments for data

with a strong predictor-variance relationship and various degrees of correlation.

Interestingly, when not accounting for either the correlation or the heteroscedasticity,

the magnitude of departure from independent increments is less than that for the equiv-
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Figure 7.8: Places of possible nonmonotonic “information” when the data are truly ex-
changeable. These plots consider the relative amount of information between one interim
analysis before any individuals have a 4th (final) measurement and one interim analysis
at points later in calendar time when various fractions of 4th measurements have been
obtained.
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alent amount of heteroscedasticity with independent data. For example, with a predictor

variance relationship as in equation 5.1 and a = 10, b = 5, and γ = 1, we saw in table 5.1

that the relative departure from independent increments was 3.19 under scenario 1. For

the equivalent parameters, but exchangeable data, table 7.3 shows that all three possible

values have less relative departures from independent increments, and smaller differences

from the nominal type I error rate as well. The same is true for data with an AR(1) corre-

lation structure as well. The combination of inefficiencies appears to reduce the departures

from independent increments and thus lessen one potential problem of using an inefficient

estimator in this setting. An intuitive explanation for this effect is that the correlation be-

tween measurements within individuals will often make OLS estimates at interim analyses

more correlated than they would be if independent increments were true, although this need

not always be true. Heteroscedasticity such that later measurements are more variable will

make the correlation between statistics at interim analyses less than it would be if there

were independent increments. Thus, there are two competing factors affecting the amount

of departure from an independent increment structure, which can lead to smaller departures

than would be true under either correlated or heteroscedastic data alone.

7.5.2 Accounting for heteroscedasticity but not correlation

This paradox of the increasing variability of the measurements decreasing the problems due

to non-independent increments continues even when properly weighting for the heterosced-

saticity. For this scenario, we allow for optimal weighting for the heteroscedasticity, but

using working independence for the correlation structure. Such a model is similar to a

model that assumes a particular mean-variance relationship (although not identical).

Table 7.4 shows the departures from independent increments under the same scenarios

as in table 7.3. However, now that the heteroscedasticity is weighted appropriately, we again

see the pattern of increasing departures from independent increments with increasing cor-

relation. However, the amount of departure from independent increments is still measured

to be less than in the totally independent data case.
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Table 7.3: Empirical type I error and power for the alternative calculated to have 97.5%
under an independent increment structure, when using an independence working covari-
ance matrix with GEE and heteroscedastic data. The relative and linear departures from
independent increments are as in equations 5.7 and 5.8, respectively.

Scenario 1: a=10, b=5, γ = 1

Relative Linear OBF Pocock

True Correlation Ind. Inc. Ind. Inc. SPnull SPalt SPnull SPalt

Exchangeable ρ = 0.3 2.1541 0.2652 0.0247 0.9755 0.0250 0.9749

ρ = 0.6 1.5150 0.1976 0.0250 0.9751 0.0249 0.9750

ρ = 0.9 2.1388 0.0293 0.0250 0.9750 0.0237 0.9763

AR(1) ρ = 0.3 3.1474 0.3546 0.0246 0.9755 0.0246 0.9752

ρ = 0.6 2.3405 0.3187 0.0248 0.9752 0.0249 0.9751

ρ = 0.9 1.5835 0.1851 0.0250 0.9750 0.0243 0.9755

Scenario 1: a=10, b=5, γ = 2

Exchangeable ρ = 0.3 3.1481 0.3012 0.0235 0.9765 0.0242 0.9757

ρ = 0.6 1.4740 0.1916 0.0246 0.9754 0.0251 0.9749

ρ = 0.9 1.0350 0.0540 0.0250 0.9751 0.0244 0.9756

AR(1) ρ = 0.3 4.1844 0.3997 0.0227 0.9772 0.0230 0.9769

ρ = 0.6 3.0843 0.3421 0.0237 0.9763 0.0241 0.9758

ρ = 0.9 0.9795 0.1713 0.0248 0.9752 0.0249 0.9751
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Table 7.4: Empirical type I error and power for the alternative calculated to have 97.5%
under an independent increment structure, when using an independence working covariance
matrix with GEE and heteroscedastic data, but accounting for the heteroscedastic data.
The relative and linear departures from independent increments are as in equations 5.7
and 5.8, respectively.

Scenario 1: a=10, b=5, γ = 1

Relative Linear OBF Pocock

True Correlation Ind. Inc. Ind. Inc. SPnull SPalt SPnull SPalt

Exchangeable ρ = 0.3 0.5726 -0.0093 0.0250 0.9749 0.0249 0.9749

ρ = 0.6 1.4537 -0.0258 0.0250 0.9750 0.0244 0.9753

ρ = 0.9 2.9966 -0.0624 0.0249 0.9750 0.0233 0.9765

AR(1) ρ = 0.3 0.9550 0.1519 0.0250 0.9750 0.0251 0.9748

ρ = 0.6 1.0602 0.1828 0.0249 0.9749 0.0250 0.9750

ρ = 0.9 1.6250 0.1090 0.0250 0.9749 0.0241 0.9757

Scenario 1: a=10, b=5, γ = 2

Exchangeable ρ = 0.3 0.3809 0.0000 0.0250 0.9749 0.0250 0.9749

ρ = 0.6 0.8251 0.0000 0.0250 0.9749 0.0247 0.9753

ρ = 0.9 1.3577 0.0000 0.0250 0.9750 0.0240 0.9761

AR(1) ρ = 0.3 0.8618 0.1312 0.0250 0.9749 0.0252 0.9748

ρ = 0.6 0.9507 0.1560 0.0249 0.9749 0.0251 0.9750

ρ = 0.9 1.0453 0.0809 0.0249 0.9750 0.0245 0.9756
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7.5.3 Practical Consideration

As in the case of no heteroscedasticity, we are concerned about when non-independent

increments and possible nonmonotonic information growth may occur in practice when

using OLS. As before, we consider a scenario in which every individual will have four

measurements made (at equally spaced study times 0-3), and we assume that an interim

analysis will be conducted before a fourth measurement is obtained on any individual (at

time tj which is fixed). We are interested in the possibility of non-independent increments

and nonmontonic information growth between this analysis and another interim analysis

(at time tk) which we vary based on the fractional number of individuals with a fourth

measurement. We consider three different accrual patterns as seen in table 7.2.

We assess independent increments by plotting log(Cov(β̂1j ,β̂1k)

V ar(β̂1k)
), so that positive numbers

indicated greater correlation between the interim statistics than would be true if indepen-

dent increments were present. For possible nonmonotonic information growth, we plot

log( V ar(β̂1j)

V ar(β̂1k)
), so negative values indicate nonmonotonic “information.”’

To assess these concerns with heteroscedastic, correlated data, we deliberately chose a

great deal of heteroscedasticity to see what may be possible in extreme cases. We investigate

the cases in which a = 30, b = 5, and γ = 1 or γ = 2 as in the equation V ar(Y |x) =

σ2(a+ bx)γ .

Figures 7.10-7.13 show places of possible large deviations from independent increments.

In general, heteroscedasticity with correlated data does not lead to larger deviations from

independent increments than is true with homoscedastic data. With heteroscedasticity up to

the case of γ = 2, non-independent increments is of minimal concern, unless the correlation

within individuals is extremely high (ρ > 0.6) and the accrual is short relative to follow-up.

If the data are truly AR(1), non-independent increments are even less of a concern than if

the data are truly exchangeable.

Figures 7.14-7.17 show places of possible nonmonotonic information growth in this

setting. With medium to slow accrual relative to follow-up, there is little problem with

nonmonotonicity, as it occurs only with high correlations (ρ at least > 0.6) and occurs only

when a small fraction of individuals have the fourth measurement, so that interim analyses
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Figure 7.10: The relative amount of non-independent increments using OLS when the data
are truly exchangeable and there is some heteroscedasticity (γ = 1). These plots consider
the correlation between one interim analysis before any individuals have a 4th (final) mea-
surement and one interim analysis at points later in calendar time when various fractions
of 4th measurements have been obtained.
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Figure 7.11: The relative amount of non-independent increments when the data are truly
AR(1) and there is some heteroscedasticity (γ = 1), using the same setting as in figure 7.10.
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Figure 7.12: The relative amount of non-independent increments using OLS when the data
are truly exchangeable and there is greater heteroscedasticity (γ = 2). These plots consider
the correlation between one interim analysis before any individuals have a 4th (final) mea-
surement and one interim analysis at points later in calendar time when various fractions
of 4th measurements have been obtained.
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Figure 7.13: The relative amount of non-independent increments when the data are truly
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ure 7.12.
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would have to be spaced very close together for nonmonotonicity to be of concern. However,

if accrual is fast relative to follow-up (such that nearly all individuals are accrued before

a second measurement is made on any individual), then nonmonotonic information is of

more concern. With low to moderate correlations (ρ < 0.6), nonmonotonic information is

possible with heteroscedasticity, but only when an interim analysis occurs shortly after one

that was at a point of balance. As long as such a situation is avoided when planning a

trial, nonmontonic information growth is unlikely with low to moderate correlations and

heteroscedastic data. However, if the correlation is high (ρ > 0.6), care should be taken

to schedule analyses such that the balance is similar between the interim analysis times. If

one interim analysis is balanced, but the next is not, nonmonotonic information growth can

occur.
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Figure 7.14: Places of possible nonmonotonic “information” using OLS when the data are
truly exchangeable and there is some heteroscedasticity (γ = 1). These plots consider the
relative amount of information between one interim analysis before any individuals have
a 4th (final) measurement and one interim analysis at points later in calendar time when
various fractions of 4th measurements have been obtained.
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Figure 7.15: Places of possible nonmonotonic “information” when the data are truly AR(1)
and there is some heteroscedasticity (γ = 1), using the same setting as in figure 7.14.
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Figure 7.16: Places of possible nonmonotonic “information” using OLS when the data are
truly exchangeable and there is some heteroscedasticity (γ = 2). These plots consider the
relative amount of information between one interim analysis before any individuals have
a 4th (final) measurement and one interim analysis at points later in calendar time when
various fractions of 4th measurements have been obtained.
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Figure 7.17: Places of possible nonmonotonic “information” when the data are truly AR(1)
and there is some heteroscedasticity (γ = 2), using the same setting as in figure 7.16.
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Chapter 8

EVALUATION OF RECOMMENDATIONS

To conclude, we present some recommendations for future studies and then evaluate

how these recommendations would behave in an example study. These recommendations

would be applicable to studies of the type investigated in this dissertation; namely stud-

ies of a linear rate of change over time with possible predictor-variance or mean-variance

heteroscedasticity and possible correlations between measurements on the same individual.

The methods are applicable to using GEE in this setting.

8.1 Recommendations

8.1.1 Design Stage

In most circumstances, studies can be planned to use working independence with GEE.

Although this approach can result in some loss of efficiency (particularly at interim analyses

where the design is not balanced) advantages of this approach are that the linear contrast

will always be consistently estimated and that convergence is guaranteed. Both advantages

are particularly important in clinical trials in which analyses must be fully prespecified and

we are concerned about the implications of our statistical approach when the model is not

completely correct and when non-convergence of a model would be particularly problematic.

At the design stage of a trial, the information growth should be estimated under the

null with reasonable assumptions about any possible heteroscedasticity and correlations

between measurements on the same individual. Assuming that the study observation times

are fixed by scientific concerns, it will also be necessary to make a reasonable estimate of

the accrual pattern. Unlike in trials with a single outcome measurement on each individual,

the information growth in longitudinal trials depends on the study observation times and

the accrual pattern.

For power calculations in the presence of an assumed mean-variance relationship, we
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recommend updating the final information that would be true at the end of the trial based

on the mean-variance relationship. Such an adjustment for a positive mean-variance rela-

tionship will adjust the power downward for a positive hypothesis or upward for a negative

hypothesis.

Study designers can consider modifying the futility boundary based on the anticipated

information growth for the alternative with estimated 97.5% power after adjustment for

the mean-final information. In the presence of a greater alternative with a positive mean-

variance relationship, this will generally bring the actual power closer to the nominal 97.5%

level and will improve efficiency (lower ASN) under the null. However, this step is not

necessary and may be skipped if the stopping probabilites of the design under the null are

to be fully maintained.

Nonmonotonic information growth is very unlikely in most reasonable circumstances.

If accrual is very short compared to the duration of follow up and either correlation is

expected to be very high or extreme heteroscedasticity is expected, then nonmonotonic

information growth maybe possible if interim analyses are spaced very close in calendar time.

In these extreme situations, interim analyses should be planned to take place at points in the

study where balance is anticipated (and avoid scheduling interim analyses where only a few

individuals have measurements at the most extreme study times). Further, in such extreme

situations, one should strongly consider using alternative working covariance matrices such

as an exchangeable working covariance matrix. Based on our simulations, even extreme

patterns of fast accrual relative to follow up (e.g. everyone has two measurements before

anyone has a third) do not produce sustained nonomontonicity with correlations up to

ρ = 0.6 or heteroscedasticity up to γ = 2.

8.1.2 Conducting the Trial

We recommend using boundaries on the z-statistic scale when conducting interim analyses

for reasons illustrated in chapter 4. Boundaries at the final analysis should be constructed

using a constrained boundary approach that adjusts for the true information growth ob-

served over the entire study. This approach is easily implemented and will maintain close
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to the nominal type I error rate except in extreme cases.

If the timing of interim analyses varies dramatically from what was expected at the

design stage, the boundaries may be modified as per standard techniques using the expected

information growth under the null (or the alternative for the futility boundary if a modified

futility boundary is being used).

8.1.3 Post-Trial Inference

At the conclusion of the trial, we recommend calculating the sampling density based on

the observed variance of the test statistic and either (a) the true information growth if the

study continued until the final analysis or (b) the assumed information growth under the

null if the study terminated early. The sampling density can then be used for confidence

intervals and for adjusted estimates of the treatment effect.

8.2 Case Study

As an example, consider a one-arm trial to detect a decrease in the rate of cognitive decline.

For the sake of this example, we will assume the measure of cognitive functioning is done

with an instrument such that:

• Positive numbers indicating worse cognitive function

• The variability of the test increases with higher scores, such that they fit our model

for a mean-variance relationship with γ = 2.

• The time between measurements is sufficient and the measurement instrument is such

that there is no improvement in scores due to practice, which implies that repeated

measures are also valid measures of cognitive function

As before, we use the model that the vector of measured outcomes on each individual,

Yij , is given by:

Yij ∼(µi, σ
2
i V (µi))
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with µi given by:

µi =β0i1 + β1ix

For our example, we assume a known null in which β0 = 25 and β1 = 0.50. We assume

that the clinically significant alternative for which 97.5% power is desired corresponds to

β1 = 0.40; a 20% reduction in the rate of decline.

To consider the extremes of possible mean-variance relationships and correlations that

could occur in practice, we let σ2
i = 0.1 and elements of the covariance matrix be as follows,

with γ = 2 and ρkk′ = 0.6.

Vkk = (β0 + β1xk)γ

Vkk′ = ρkk′ ∗
√
VkkVk′k′ k 6= k′

This example was loosely motivated by a trial done to test for a change in the rate of

cognitive decline in Alzheimer Disease (Aisen et al., 2008). As in that trial, we assume

that measurements will be taken at baseline, and every three months thereafter until the

last measurement 18 months from randomization. For the sake of example, we assume that

accrual takes place uniformly over six months and that interim analyses are scheduled at

12.5, 18.2, and 24 months in calendar time from the start of the study. This pattern of

accrual relative to follow up is among the most extreme that could reasonably occur.

8.2.1 Design Stage

We plan the trial to use GEE with an independent working covariance matrix that does not

account for any mean-variance relationship, knowing that correct standard errors can be

obtained with the sandwich estimator as explained previously. Thus, we know that there

will not be independent increments under the null, because at no time other than the very

beginning and very end of the study is the design completely balanced.

In fact, with analysis times of 12.5, 18.2, and 24, and the assumed variance and corre-
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lation structure, the covariance matrix for the slope statistic under the null is:

nV arnull(β̂1) =


1.192 0.380 0.115

0.380 0.350 0.138

0.115 0.138 0.156


This matrix corresponds to 0.46 on the relative departures from independent increments

metric first described in chapter 5. It is 0.129 for the linear trend in departures. Of note, the

first and second analysis are more correlated than what would be true under independent

increments, but the first and second analyses are less correlated with the final analysis than

what would be true under independent increments.

Under the alternative, there would also be departures from independent increments, and

the covariance matrix for the slope statistic would be different due to the mean-variance

relationship.

nV aralt(β̂1) =


1.098 0.348 0.107

0.348 0.310 0.123

0.107 0.123 0.134


This covariance matrix corresponds to a relative departure from independent increments of

0.41 and a linear trend of 0.10.

The information growth is also different between the null and alternative. Under this

null, the information growth would be: 0.13, 0.44, 1. Under the alternative, the information

growth would be 0.12, 0.43, 1. In this case, the lower than expected increase in variance

of measurements later in the study decreases the fractional amount of information at the

earlier interim analyses relative to the final.

At the design phase, the relative conservatism of efficacy and futility boundaries should

be decided upon for scientific and statistical reasons. For the sake of this example, we

will plan for an O’Brien-Fleming efficacy boundary and a Pocock futility boundary. The

z-statistic boundaries for this choice of efficacy and futility boundaries under the null infor-

mation growth and under the alternative information growth are shown in table 8.1. In this

example, we select boundaries that use the efficacy boundary under the null information

growth, the futility boundary under the alternative, and then plan the final analysis using
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the constrained boundary approach under the null. The mixed, final planned boundaries

are also shown in table 8.1. For ease of illustration, these boundaries correspond to the

difference between the observed and the null slope, so more negative numbers correspond

to a larger treatment effect.

Table 8.1: Z-Statistic boundaries using the information growth under the null, the alterna-
tive, and a mixture of the null and alternative.

Null IG Alt. IG Mixed

Analysis # a d a d a d

1 -5.31 0.80 -5.50 0.85 -5.31 0.85

2 -2.88 -0.50 -2.92 -0.46 -2.88 -0.46

3 -1.92 -1.92 -1.92 -1.92 -1.93 -1.93

The appropriate sample size (number of individuals to be accrued) is then calculated

from the z-statistic critical value with 97.5% power of the design, the alternative treatment

effect with 97.5% power, and the other parameters which affect the standard error at the

final analysis: the assumed mean-variance relationship, correlation, and σ2. In this example,

this works out to n = 119 individuals.

8.2.2 Evaluation

Under the null, the empirical type I error is 0.024. Under the alternative with desired

97.5% power, the realized power is 98.1%. To evaluate the design over a broader range of

alternatives, we chose to look at alternatives that would have 25, 50, 80, 90, and 97.5%

power if the final information and information growth were the same for these alternatives

as under the null and assuming independent increments. The empirical power curve for

these alternatives along with the assumed power curve is shown in figure 8.1.

It is worth noting that although the expected power does not match exactly what we

would assume using standard methods, the differences are small and correspond to having

greater than expected power for the alternative. We have seen that this result occurs under
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Figure 8.1: Power curves for the true (empirical) power at various alternatives and the
expected power using all assumptions.
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a positive alternative as well, once an adjustment is made for the change in final information

due to the alternative.

The coverage of 95% confidence intervals constructed after adjusting the sampling den-

sity for true information growth (if observed) or simply the observed variance but assuming

the null information growth (if the trial is stopped early) is shown in figure 8.2. Under a

variety of alternatives, this method provides appropriate confidence intervals after simple

adjustment.

●● ●
● ● ●

−0.10 −0.08 −0.06 −0.04 −0.02 0.00

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Difference in Slope

C
ov

er
ag

e

Figure 8.2: Empirical coverage probabilities for 95% confidence intervals at various alter-
natives.
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8.3 Discussion

We have seen that mild to moderate departures from independent increments do not gener-

ally cause difficulty in estimating the sampling density. Under most reasonable boundaries,

type I error rate is maintained very near the nominal level. Further, even under moder-

ate departures, with standard boundaries the test becomes slightly conservative, which is

certainly preferable to becoming anti-conservative in this setting. Similarly, with most stan-

dard boundaries, departures from independent increments do not have a great effect on the

assumed power, and departures from independent increments tend to lead to greater than

anticipated power when differences are observed.

In settings where there is a mean-variance relationship, it is important to account for

the mean-final information relationship when calculating power. Once this adjustment is

made, however, the differences in information growth due to different alternatives does not

cause much difficulty under most reasonable conditions.

It is important for future study designers to make reasonable choices for boundaries to

avoid extreme situations caused by very aggressive early boundaries. These situations can

lead to poor statistical properties, as can extreme correlations or heteroscedasticity (due ei-

ther to predictor-variance or mean-variance). If extreme correlations or heteroscedasticity is

anticipated, planned interim analyses should not be spaced such that a time of near balance

is followed immediately by a time when only a handful of individuals have a measurement

at the final study time. Even in extreme situations, longer accrual relative to follow up will

mitigate the situation somewhat.

Although we considered cases in which the study times were fixed and constant for

all individuals, our results will likely generalize to the more common situation in which

study times vary by subject – assuming that the observed study time is independent of the

treatment group. The results should also generalize to nonlinear models with GEE, which

might be used when looking at a change in rate of Poisson data.
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