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0 Conventions

This document presents a technical overview of the methods implemented in the C and S-Plus code
that comprises the module S+SeqTrial. In this document the following conventions are used:

1. Parentheses () are used to denote arguments to a function, elements of a vector, or endpoints
of an open interval; square brackets [] are used to designate order of arithmetic operations,
elements of a matrix, or endpoints of a closed interval; curly brackets { } are used to designate
order of arithmetic operations (in alternation with the square brackets) or elements of a set.
Hence, y(t) shall mean a function y evaluated at ¢, while y[t + u] would mean to multiply a
variable y by the quantity ¢ + .
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X ~ N(p,0?) is used to signify that X is a random variable distributed according to a
normal distribution having mean p and variance o2, ®(z) denotes the cumulative distribution
function for the standard normal distribution.

. Pr(A) denotes the probability of event A; Pr(A|X) shall denote the probability of event

A after conditioning on the observation of random variable X; Pr(A;pu) shall denote the
probability of event A when the parameter is .

. The letters a, b, ¢, and d when used as a subscript shall denote a parameter that is in some

way related to the corresponding boundary of a group sequential test.

. The letters S, X, Z, P, B, C, H, and E when used as a subscript shall denote one of the

scales for test statistics. The letter T shall be used to represent any choice of these test
statistics.

. An asterisk, %, used as a superscript shall denote a quantity measured under the standardizing

transformation. Note that all quantities measured under the standardizing transformation are
denoted by appending an asterisk as a superscript to the symbol used on the untransformed
scale with the notable exception of the standardized mean, which is denoted by .

An asterisk, *, used as a subscript shall usually indicate a general formula that might apply to
several different subscripted parameters. for instance, an asterisk might be used as a subscript
to stand for any of the letters a, b, ¢, or d when it is desired to draw parallels among the
formulas for the four boundaries, to stand for any of the statistics when it is desired to draw
parallels among the various boundary scales, or to stand for ‘4’, ‘—’, or ‘0’ when it is desired
to draw parallels among the various hypotheses.
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1 Fundamental model, test statistics, and standardizing transfor-
mation

Suppose we potentially have measurements
X;i~N(p,0% i=1,2,...,N. (1.1)

We assume that all observations are independent. We further assume that o2 is known and that u
is an unknown parameter measuring treatment effect and which is to be estimated and/or tested.
Let Ny, No, ..., Nj be sample sizes such that Ny > 0, N; < Nji; for j=1,...,J—-1and N; = N.
We consider the testing of the null hypothesis

Ho : = po- (1.2)

In the simplest clinical trial setting, X; represents the measurement of treatment response in the
ith sampling unit, and u? reflects the variability of each sampling unit. The unknown parameter
w is the population average treatment response. Ny, ..., Ny represents sample sizes at which the
data might be statistically analyzed. For notational convenience, we define the group sizes accrued
between analyses as ny = Ny and nj = N; — N;_q1,for j =1,...,J.

More generally, N;/ o2 measures the statistical information accrued at various stages during the
study. More general settings are described in section 3, and the issues that arise when estimating

o2 are discussed in section 12.

1.1 Frequentist Test Statistics

For j =1,...,J, define statistics

(partial sum) S; = in

(sample mean) X; =

(X, — o)

é Fle T

(normalized statistic) Z; =

Z 1
e 2y, (1.3)

(fixed sample P value) P; = 1—-®(Z;)=1- /
—oco V21
where ®(z) is the cumulative distribution function for the standard normal distribution.

The above statistics should be recognizable as those that would typically be used in hypothesis
testing. It should be noted that for our purposes those statistics are essentially equivalent. that
is, because Nj, uo, and o2 are all assumed to be known quantities, and because ®(z) is a known
function, converting any one of those statistics into another is straightforward.

Note that for a fixed (nonrandom) N; when the data are not sampled according to a stopping
rule, the above statistics would have distributions

Sj ~ N(Nju, Nj0'2)

Z; ~ N(MMJ) (1.4)

g
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and P; would be the upper one-sided P value in a fixed sample test of Hy : 1 = pg.
By the independent structure of the observations, the increment S;i; — S; is independent of
S;. this in turn suggests that for j =1,...,J -1

cov(S), 8j+1) = Njo’
[ 0‘2

cov(X;, Xj+1) =

e Njt1

1.2 Bayesian Statistics

In a Bayesian setting, we are interested in statistics based on the posterior distribution of p, which
is based on the observed data and some prespecified prior distribution of the mean parameter.
For convenience, we will consider only the conjugate prior distribution. thus, we will assume a
prior distribution u ~ AN({,72). the posterior distribution of x conditioned on the observations
Xi,..., Xn; is then

N.7-27._|_0-2 o272
M|(X17"'7XN]-NN< : : ¢ >

N2+ 02 ' Nj72 + 02
Statistics of interest might include the posterior probabilities that the mean mu is greater than the
null hypothesis po or prespecified alternative hypotheses py and p_ (see section 2). In general,

then, we can define a statistic for the posterior probability that the mean p is greater than some
hypothesized value p,.. We define statistics

Bj(C77_27,u*) = PT(MZM* | (Xl,...,XN].))
- 1_-3 (M*[Nj7'2 + 02— N;72X; — 02C>

oT\/N;T? + o2

A special case that is of occasional interest is the noninformative prior corresponding to the limit

as 72 — oo. In this setting, the Bayesian posterior probability reduces to

(1.6)

M*_Y'
By = oouu) = Prip oot e | (Koo X)) = 1 -0 (VAT

which is similar in form (but not interpretation) to the fixed sample P value.
These Bayesian statistics are for our purposes equivalent to the frequentist statistics specified
in eqn (1.3), as again conversions among the various statistics involve only known quantities.

1.3 Measures of Futility

In the setting of group sequential trials, it is often of interest to consider various measures of the
futility of continuing the study. A common goal of such measures is estimating the probability that
the test statistic at the Jth analysis might exceed some threshold, where the calculation of the
probability is conditioned on the observation at the jth analysis. In what follows, we consider the
use of Yj as the test statistic and define tz; as the threshold of interest for that test statistic at
the Jth analysis. As noted above, these measures of futility could also be specified based on any
of the statistics defined in this section, with a suitable transformation of the threshold as defined
in section 1.5 and discussed in section 4.3. The value of the conditional probability is independent
of which test statistic is used, providing the corresponding transformation of the threshold is used.



Technical Overview, Section 1—6 Sep 07, Page 6

using the independence of the individual observations, the conditional distribution of X ; given

X is found to be
_ N: — [N;— N;] o2
X X;~N —LIX; -y, ———L—.

Computing probabilities based on the above distribution will not result in a statistic, as the
distribution depends on the unknown parameter pu. We can, however, compute the probabilities
under hypothesized values for p. Obvious candidates for such computations might be the null
hypothesis pg, either of the alternative hypotheses p4 or p—, or the maximum likelihood estimate
fi = X; of pu at the jth analysis. We can then define statistics for a specified threshold tx; and
specified value of p = g

Ciltxy pe) = Pr(Xy>tx; | Xjipn=p)
Nylts, — pts] — Ni[X; — s
U\/NJ—N‘]’

Note that when the conditional probabilities are computed using the observed maximum like-
lihood estimate X; for p, we obtain

Cj(tfja,u* :7]) = P’I”(YJ >tYJ | Yj;,u:Yj)

= 1-® (M) (1.8)
T4/ N J — N j

An alternative approach is to use a Bayesian prior distribution for u to compute its posterior
distribution based on the observation of Yj, and then to compute a predictive probability by
averaging the conditional probabilities of exceeding the threshold as p ranges over that posterior
distribution. Using this approach with a normal prior distribution p ~ N({, 72) yields a posterior
distribution A(u|X ;) that is normal as given in section (1.2) above. We then compute the marginal
conditional distribution of X ; given X ; as a normal distribution having mean {[N;7%+ 02| N; X ; +
[Nj—Nj]o?¢}/{N;[N;7%+0?]} and variance 0[N — N;][N 72 +02]/{N3[N;72+0?]} and survival
function

Hyltg s C7) = [ Pr(Xy > b, | ) A | X5) di

e (NJ[Nsz +0?[t; — X;] + 02Ny — Nj|[X; - g]) .9
o\/[Nj — Nj][N;72 + 02][N;7% + 0?]

When we consider a noninformative prior distribution (u ~ AV(¢,72) and taking the limit as 72 —

oo, the posterior distribution A(u|X;) is normal with mean X; and variance 0?/N;. we then
compute the marginal conditional distribution of X ; given X; as having survival function

1.4 Error Spending Measures

Another set of statistics sometimes used in the group sequential setting are those related to the
error spending functions. these statistics are based on the sampling distribution of the group se-
quential test statistic under various hypotheses. As such, the definition of these statistics makes use



Technical Overview, Section 1—6 Sep 07, Page 7

of the general form of stopping rules defined in section 4 and the group sequential density defined
in section 5. We use this notation at this point (in advance of its formal introduction) in order
to highlight that measures based on error spending function are in fact statistics independent of
unknown parameters and that there are 1:1 correspondences between each of the error spending
statistics and statistics measured on each of the scales defined above. We do note, however, that
a choice needs to be made to define the error spending scale in a manner such that a 1:1 corre-
spondence exists for all possible values of the observed statistics at the interim analyses (the path
followed here), or to define the error spending scale in a manner such that a 1:1 correspondence
exists only for possible values of the observed statistics at the end of a study (an approach that will
term the “error spending function”, rather than the “error spending scale”). Further discussion of
this distinction will be made in section 6.3.

Consider a setting in which for each of the j =1, ..., J specified sample sizes there are specified
constants measured on the partial sum scale —oo < ag; < by < ¢gj < dgj < 00,a55 = bsy and
csj = dgj. Further suppose there are four specified hypotheses piq, pp, tie, and pq, with gy < pg < e
and pp < pg < pe- Let p(4, s; 1), f(J4,s; 1), and F(j, s; 1) be defined by eqns (5.2), (5.3), and (5.4),
with Cj = (agj, bsj] U [csj,dsj) for j=1,...,J.

We define statistics on the error spending scale as

i1 i—1
L [ S LIS o .
Eaj(,ua) = Oé_g [Z/ p(Z75§Ma) d5+/ f(]a&/hz) dS] = Oé_g ZF(ZvaSﬁMa)"i'F(]aSj?,ua)
=17~ —© i=1

[y

J— o) 00
Z/b&- p(i, s; piv) d8+/' f(s s ) dé’]

Bym) = G [

1 o0 .
= [ p(i, s; ) ds + F(j, 003 pp) — F(]aSﬁMb)]
sz

=1
1 g1 CSi i
Eej(pe) = [ p(i, 85 pre) ds + f(7, 85 tie) ds]
’ [1 - ﬁu] i—1 /—oo /—oo
: [ [ s s + >]
= p(i, s; pe) ds + F' (7, S5 pe
[1 _ﬁu i—1 00 I
Egi(pa) = O%[Z/d (i, 85 pa ds+/ f(, 85 pa) ]
v Li=1 Y %si
7—1
= ai {Z[F(Z,w;ud) — F(i, dg;; pa)] + F(j, 003 pa) — F (7, Sj;ud)} (1.10)
v oi=1

where constants oy, ay,, B¢, and 3, are defined by
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J as; J
ap = Z/ pi, 55 pa) ds = > F(i, agi; fta)
=177 =1
J asg J
Be = Z/ p(i, s; ) ds = Z F(i, asi; pw)
i=1" 7% i=1
J oo J
B = 3 [ s ds = 3 1Pl e ) — G ds o)
i=1 Si =1
J oo J
Qy = Z/ p(iab’%/ﬁd) dSZZ[F(i,OO§Md) _F(i’dSi;Md)] (111)
i=1 Y dsi i=1

In section 6.3, the above statistics will be related to the error spending functions for a group
sequential test having continuation sets for the partial sum statistic S; defined by the values of the
asj’s, bsj’s, csj’s, and dg;’s. The values of ay, ay, B¢, and 3, will relate to the size and power of the
group sequential design.

1.5 Transformations Among the Various Scales

As noted above, each of the statistics defined by eqns (1.3), (1.6), (1.7), (1.9), and (1.10) are
equivalent in the sense that knowing one of the statistics determines the values of the other statistics
precisely. This then suggests that we can express a group sequential setting in terms of any of the
above statistics, thereby establishing a scale for the problem. We shall at times abbreviate the
scales according to the notation used for that statistic. Hence,

S-scale partial sum scale

X-scale sample mean scale

Z-scale normalized scale

P-scale fixed sample P value scale

B-scale Bayesian scale (a function of hypothesized mean)
C-scale conditional probability scale (a function of threshold

and hypothesized mean

H-scale predictive probability scale (a function of threshold)

FE,-scale lower type I error spending scale

FEj-scale lower type II error spending scale

FE.-scale upper type II error spending scale

E4-scale upper type I error spending scale (1.12)

Critical values on a given scale can be similarly converted to other scales using transformations
as follows. In defining these conversions, we shall provide formulas for converting a value on an
arbitrary scale to the S-scale and for converting the S-scale to any other scale. We again make use
of the definitions of p(j, s; u), f(Jj, s; ), and F(j, s; u) as defined by eqns (5.2), (5.3), and (5.4) in
section 5.1. We note that it is assumed that the threshold ¢ ; is measured on the X-scale, and
that the boundaries agj, bsj, cs5, and dgj for j = 1,...,J are measured on the S-scale.

Suppose at the jth analysis, y is a value measured on one of the possible scales. The following
table provides conversions for y measured on each of the scales to s measured on the S-scale. Note
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that in the cases of the B-scale, C-scale, and H-scale, y is a function of a mean p, and/or a
threshold tx;-

S-scale s = y
X-scale s = Ny
Z-scale s = 4/ 'ay—l—Njuo
P-scale s = /Njo®~ )+ Njpo
«NiT2 4+ 0% — 0%C — o7 /N;72 + 0207 (1 — y(¢, 72, 1
B-scale s = el ] ¢ ; ( v s ))
-
noninf B-scale s = —0/N;®~ ( y(¢, 72 =00 ,u*))

C-scale s = NJtYJ—[NJ—Nj]M*—O' Nj— N;®™ (1—y(tyj,u*))
NyIN;j7° + 0®ltz; — 0* [Ny — NjI¢
NJT2—|—U2
o/[Ns — Njl[Ny72 + 0?][N;72 + 020 (1 — gtz 7%)
NJT2—|—U2

H-scale s =

N.
noninf H-scale s = Njtx; —0 FJ[NJ ~ Njjo! (1—y(tsy, ¢, = 00))
FE,-scale s = F~ (], oy (pa) ZF 1,085 fha) 5 a)
o0
Byscale s = F~' |4, F(j,00; m) — [1— Bely(m) +Z/ pli, s ) dus oy
i=17bsi

g1 CSi
Eoscale s = F' (.7} [1 = Buly(pe) — Z/ pli, u; pe) du; uc>
i=177%°

Egscale s = F7! (j, F(j,w;ud)—auy(ud)JrZ/ p(i,u;ud)duwd> (1.13)

The following table provides the formulas for converting between a value s measured on the
S-scale and a value y on any of the other scales. Note that in the cases of the B-scale, C-scale, and
H-scale, y is a function of a mean y, and/or a threshold ¢+ T



S-scale

X -scale

Z-scale

P-scale

B-scale

noninf B-scale

C-scale

H-scale

noninf H-scale
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FEp-scale

FE.-scale

FE-scale
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y=s

y:
S _
[N]- to]

N;
y=V/N——
yzl_q,(\/ﬁjM)

g

() =1 — @ PN 0] — s 0
T oT\/N;T? + o2
2 ,u*Nj—s
S, To=00, ) =1 — @ | ——
y(¢ Iy ( o /N, )
Nylts; — ps] — 5+ Njp)
U\/NJ—N‘]’
NIIN;7 4+ o¥litg, — 5]+ 02Ny = Njll — ¢
o\/[Ny = NjJ[Ny72 + 0?][Nj72 + 0]

Z/(tYJaM*) =1-0 (

y(tfjv C77_2) =1-¢ (

Niltgy - £]

o/ NNy~ N

y(tfjv ¢ OO) =1-¢

1= .
yY(ta) = ” > F(i, agi; pta) + F(4, 55 fta)
=1
1 [ e
y(n) = > | plivus i) dut P ooi ) = FU.5i )
[1=8d | = Jos:

1 =L reg;
y(ue) = =4 [; /_Oo P, u; pie) du+F(.7}8;uc)] (1.14)

j—1
y(pa) = — {Z [F (i, 005 pa) — F (i, dsi; pra)] + F (4, 00; pra) — F(j, s ,Ud)}

«
v =1

1.6 Standardizing Transformation

We find it useful to introduce a standardizing transformation on two grounds:

1. In later sections we shall find that many of the calculations required for statistical inference
with group sequential sampling are extremely computationally intensive. By reducing each
problem down to some standardized form, we can develop computer routines to perform
general functions under that standardizing transformation, and then we can transform the
output to the original scale desired by the user.

2. In most study design situations, we are interested in determining the sample size which would
provide adequate power to detect an alternative hypothesis of interest. We thus need to be
able to compute the operating characteristics of a group sequential test in some standardized
form that is independent of the sample size, and then solve for the sample size that would
provide those operating characteristics for a specific alternative.
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We therefore adopt the following standardizing transformation

X,_
Xr=2t M0y N=N,. (1.15)

‘" oyNy’
Note that when pug = 0 and Nj,2 = 1, this is just the identity transformation.
For notational convenience, we define for j = 1, ..., J the proportion of the maximal information
accrued by the jth analysis as II; = N;/N; and the proportion accrued between the (j — 1)th and
jth analyses as m; = n;/N.

1.6.1 Frequentist Test Statistics

In the standardized setting, the various test statistics can be defined in an analogous fashion to
those based on the original data. In particular, in analogy with eqn (1.3), for j = 1,...,J, we
consider test statistics

Nj
(partial sum) S} = ZXZ*
i=1

— S;
(sample mean) X; = H_J
(normalized statistic) Z; = 7;\/1_13'
Z*
1
(fixed sample P value) P; = 1-®(Z7) = / \/T_We_“Q/Qdu (1.16)
—00

The parallels between eqns (1.3) and (1.16) may not be immediately apparent for the definition
of the sample mean and the normalized statistic. However, the connection becomes clear if we
examine the distribution of the transformed data. In the general case, X ~ N (NLJ, N%]), where the
standardized mean ¢ is related to the original unknown mean p according to

5= /NG U (1.17)

o
In particular, in this standardized setting, the null hypothesis po corresponds to g = 0, and the
prespecified alternatives py_ and py correspond to 6_ = /Ny(u_ — pg)/o and 6+ = V/Ny(ps —
o) /o, respectively.

For a fixed (nonrandom) Nj, the distribution of the standardized partial sum is given by S5~
N (I1;6,1I;) which depends on the sample size only as the proportion of the maximal sample size.
The statistics defined in eqn (1.16) then have the sample mean estimating ¢ and the null distribution
of the normalized statistic (in the fixed sample case) being the standard normal distribution. The
formulas given in eqn (1.16) follow directly from eqn (1.3) when we choose 02 = 1, g = 0, Ny = 1,
and N; = II;. It is apparent, then, that with the standardizing transformation, IV; is in a sense
counting the accrued observations in units corresponding to a proportion of the maximal statistical
information Nj/o?, and U% is the average statistical information contributed by a single sampling
unit.

FEach of the above statistics based on the standardizing transformation can be easily related to
the corresponding statistic on the untransformed scale.
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P o= P (1.18)

1.6.2 Bayesian Statistics

We can also compute the Bayesian statistics for a given prior. We note that prior distribution
p~ N(¢,72) implies 6 ~ N(¢*, 7*2, where ¢* = VN;(¢ — po) /o and 72 = N ;72 /0%, We then find
the posterior distribution of § conditioned on the observations X7, .. .,X]"{,j is then

HjT*2—|—1 ’HjT*2—|—1

* * HJT*27* + C* 7_*2
5|<X1,...,XN].>~N< j

the posterior probabilities that the mean § is greater than some hypothesis ¢, (which might typically
be the null hypothesis o = 0 or prespecified alternative hypotheses 6, and d_) are given by

* (% k2
BJ(C y T 75*)

P’I”((S > 5* | (Xikv .- '7XN;))
- (5*[Hj7*2 +1] - I;72X; — g*)

1.19

T/ HjT *2 4] ( )

Fach of the above statistics based on the standardizing transformation is exactly equal to the
corresponding statistic on the untransformed scale. That is for d, and p. related by eqn (1.17)

B;(C*77*275*) = Bj(C77_27:u*) (120)

1.6.3 Measures of Futility

The statistics based on conditional probabilities or predictive probabilities can also be computed
under the standardizing transformation. We consider the use of 7; as the test statistic and define
e, = V/Njltx, — m]/o as the transformed threshold (using eqn (1.18)) for that test statistic at
the Jth analysis. As noted above, these measures of futility could also be specified based on any
of the statistics defined in this section, with a suitable transformation of the threshold as defined
in section 1.6.5.

The conditional distribution of X ; given Yj is found to be

X5 1%, ~ N (6 4+ (X - 0),1-115)

Computing conditional probabilities based on some hypothesis d, (which might typically be the
null hypothesw (50 = 0, one of the alternative hypotheses d. or §_, or the maximum likelihood
estimate & = each of which correspond to the appropriate value of u according to eqn (1.17))

yields:

j?

Cl(t, ) = Pr(X) >t |X;:6,)

— 1-0 (WYJ _ 5*]1__111;[2 _ 5]> (1.21)
V J
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Under the standardizing transformation, the predictive probability based on a normal prior
distribution for §(§ ~ N(¢*, 7*2) where ¢* = /N (¢ — o) /o and 7*? = N ;72 /0?) yields a posterior
distribution \*(§ |7;) that is normal as given in section 1.6.2 above. We then compute the marginal
conditional distribution of X ; given 7; as a normal distribution having mean {[7*? + 1]Hj7; +
[1—I0;]¢*}/[;7*2 + 1] and variance [1 — I1;][7*? + 1] /[I1;7*? + 1] and survival function

Hi(tsy Cr) = [ Py b5, |0 X6 )

. ([Hﬂ*2 1l — X1+ 1 - T - <*1>
]

(1.22)

VI I+ )7 4 1

2

When we consider a noninformative prior distribution (taking the limit as 7% — o0), we obtain

Each of the above statistics based on the standardizing transformation is exactly equal to the
corresponding statistic on the untransformed scale.

C;(t*fjv(s*) = Cj(tfjmu*)
Hi (e, ¢ %) = Hjltx;, () (1.23)

1.6.4 Error Spending Measures

Under the standardizing transformation, the statistics on the error spending scale are computed
for constants transformed using eqn (1.18)

0 = asj — Njpo
ov/Ny
by = bsj — Njtio
’ oV Ny
- csj — Njpo
’ ov/Ny
&y = ds; = Njto (1.24)

U\/NJ

and specified hypotheses transformed using eqn (1.17)

ba = VNylta — pol/o
6 = Nyl —pol/o
bc = /Nylue—pol/o
b0 = V/Nylua—pol/o (1.25)

using the functions f*(j,s*;9), F*(j, s*;9), and p*(j, s*;d) defined by eqns (5.2), (5.3), and (5.4)
for the standardizing transformation. We thus can define error spending statistics
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* 1 i X[+ % * [ - *
Ej(0) = — > F(i, a5 0a) + F(j, 5 0a)
¢ Li=1
1 [ e
* — (0 ok, * * ([ . — F*(i. §*:
Eb]((sb) [1_62] ; bgi p (sz 7(5b) ds +F (]7007517) (]7‘9]7617]>
1 it 5
Er(0.) = T Z/ p*(i,s*;(Sc)ds*—I—F*(j,S;;(SC)]
ul | ;=1 J—o0
I
Ey(6a) = a—*{Z[F*(i,OO;&z)—F*(ijd*sz»;&z)]+F*(j,w;5d)—F*(j,S;;5d)} (1.26)
uoi=1

where constants ay, oy, 37, and 3, are defined by

J
af = Y F*(i,a%; )
i=1

(2

J
B = ZF*(M*&»;(%)
=1
J
By = [F*(i,00;0) — F*(i, d%; 6.)]
=1
J
o, = [ (4, 003 8a) — F™ (i, d;; 6a)] (1.27)

1

Fach of the above statistics based on the standardizing transformation is exactly equal to the
corresponding statistic on the untransformed scale.

E;j((sa) = Eaj(,ua)
Eyi(66) = Ebji(u)
E:]((Sc) = Ecj(,uc)
Eyi(6a) = FEq(pa) (1.28)

Furthermore, we also have that the constants defined by eqn (1.24) are exactly equal to those
defined by eqn (1.11). That is, o = ay, 8] = B¢, o}, = oy, and G}, = (.

1.6.5 Summary of Correspondences

Conversions among the various scales under the standardizing transformations are analogous to
those presented in eqns (1.13) and (1.14). The following table provides conversions for y* measured
on each of the scales under the standardizing transformation to s* measured on the S*-scale. Note
that in the cases of the B*-scale, C*-scale, and H*-scale, y* is a function of a mean J, and/or a
threshold t*fj'
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S*-scale s* = y*
X*-scale s* = ILjy”
Z*-scale s* = /ILy"

P*-scale s* = \/qu)_l

S 4 1] — ¢* — 7T 2 1 10711 — y*(¢*, 72, 6.))

B*-scale s* =

*2
noninf B*-scale s* = — 1107 (¢, 7% = 00,4,))
C*-scale s* = t*i] —[1- Hj]é* — [1 I 11— Y (5, 04))
I, 7% + 1)t — [1 —T1,]¢*
H*-scale s* = ; ])2“ [ j
T 41
VI ML+ 100 (1 -y (8,7, 7))
B T2 4+ 1

noninf H*-scale s* = HJtYJ /I [1 =11, ]<I>_1(1 — y*(t*YJ, C*,T*2 = 0))
.77 Oégy ZF* Z aSzv ? 6(1)

j—1
Ej-scale s* = (], F*(j, 00;0p) — [1 = By ly*(dp) + Z/

E-scale s* =
o

p*(i,u™; ) du™; (5b>

=1 bg‘i

il e
Js [1 = Byly* (0. Z/S (4, u*; 0.) du* 5)

Ej-scale s* = Pl (j, F*(j,00;04) — ay,y™(0q) —I—Z/ (i, u™; 0q) du™ (5d> (1.29)

E*-scale s* =

The following table provides the formulas for converting between a value s* measured on the
S*-scale and a value y* on any of the other scales under the standardizing transformation. Note
that in the cases of the B*-scale, C*-scale, and H*-scale, y* is a function of a mean J, and/or a
threshold t*fj'
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S*-scale y* =

X*-scale Y= —

Z*-scale Yy =

8*
P*-scale y=1—-9®
(v%)
ST 4 1] — 7%2s* — ¢*
B*-scale y*(C*,T*2, 0)=1—97 (
LT A1
0,1l — s*

) =1—-0 | ——"

0 ( V1L )

¥ — 0, — s + 110,
C*-scale y*(t*yj,5*):1_@<tXJ \/%— J )>
j
7% + 1]t — &1+ [1 = I = ¢
VI =TG4+ 1[I + 1]

noninf B*-scale y*(C", 2

H*-scale y*(t*yj, ) =1-a (

*

% — i
: *_ k(g kX2 —1_ X I
noninf H*-scale Y (th,C , T =00)=1-0 (1-11,)
11
1 [
Ef-scale  y*(d,) = P Z F*(i, a3 0a) + F7 (5,575 0a)
¢ Li=1

(o)

j—1
Z / P (i, "5 8) du” + F*(j, 00; ) — F*(j, 8% &)]
. b*.

Ej-scale y (o) =

J=1 e
E’-scale Yy () = [1—6 [Z/S p*(i,u*; d.) du™ + F* (4, s™; 5)]
u i=1 o

1 — . . g %/ - Y
Ej-scale  y"(da) = pry {Z [F7 (i, 00 0a) — F* (i, dg;; 6a)] + F (4, 005 8a) — F*(4, s (iﬁdi)%)
v \i=1

Conversions between the scales under the standardized transformation and the corresponding
scales on the untransformed scales are straightforward. The following table provides conversions
between a measurement y on an untransformed scale and a measurement y* on the correspond-
ing standardized scale. Note that in the cases of the B*-scale, C*-scale, and H*-scale, y* is a
function of a mean J, and/or a threshold t* .. . j which correspond respectively to the mean
p« and threshold ¢x; according to the transformations specified by eqns (1.17) and (1.18) as in
section (1.6.3). Similarly, the error spending scales assume that the hypotheses and boundaries on
the standardized scale have been transformed from the original scale as outline by eqns (1.24) and
(1.25) in section (1.6.4).
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. « _ Y= Njpo

S-scale — S*-scale Yyt = N

X-scale — X*-scale = NJy _UMO

Z-scale — Z*-scale Y=y

P-scale — P*-scale =y

B-scale — B*-scale Y (¢, T2,6,) = y(C, T )
C-scale — C*-scale y*(t*fj’ 0x) = Ytz 1)
H-scale — H*-scale y*(t*—j, ¢ = Y(t< ;. ¢ %)
E,-scale — EX-scale ¥ (0a) = y(pta)
Ey-scale — Ejf-scale v (0p) = y(p)
E.-scale — E}-scale Y (0c) = y(pe)
Eg-scale — Ej-scale ¥ (0q) = y(11q) (1.31)

The following table provides conversions between a measurement y* on a standardized scale and a
measurement y on the corresponding untransformed scale.

S*-scale — S-scale y = Njuo + \/N_Jay*
* o *

X*-scale — X-scale Yy = o + \/T_Jy

Z*-scale — Z-scale y=y"

P*-scale — P-scale y=vy"

B*-scale — B-scale y(C, 7 ) = y* (CF, 72, 6,)
C*-scale — C-scale Yyl 1e) = y*(t*yj, 0x)
H*-scale — H-scale y(t—j, ¢, 7)) =y t*yj, * )
E}-scale — E,-scale y(ta) = y*(04)
Ejf-scale — Ej-scale y(w) =y (0p)
E}-scale — E.-scale y(te) =y (Oc)
Ej-scale — Eg-scale y(pa) = y*(0q) (1.32)

1.7 Parameter Scales

Heretofore in this section, we have considered various scales to be used in describing the sample
space for the test statistic in the setting of a one sample test for the mean of a normally distributed
random variable. In sections (1.1)—(1.5), we considered the scales for the sample space of the test
statistics for the unstandardized problem, and in section (1.6) we considered the analogous scales
for the sample space of the test statistic for the standardized problem.

It is now useful to formally define scales for the parameter space. That is, in the unstandardized
problem, we were primarily interested in making inference about p, the mean of the normally dis-
tributed random variable, and we can refer to this parameter scale as the unstandardized parameter
scale and denote it as the p-scale. In the standardized problem, we can make equivalent inference
about the standardized parameter §, and we can refer to the parameter scale in the standardized
problem as the standardized parameter scale and denote it as the d-scale. From eqn (1.17) we can
derive the formulas for converting between the u and § scales
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u-scale — d-scale S =+/N JM

d-scale — p-scale W= o+ ——0 (1.33)

As discussed in greater detail in section 3, the basic probability model that considers the mean of
a normally distributed random variable can serve as the foundation for a wide variety of probability
models frequently used in the analysis of clinical trial data. In these various probability models,
a parameter § measuring the treatment effect can be related to the parameter u of our basic
model. Typically 6 is a parameter that is more generally understood by non-statisticians than the
1 parameter that is perhaps used in a statistical model. For instance, 6 representing the odds
ratio (in logistic regression models) or the hazard ratio (in proportional hazards regression models)
might be measures of treatment effect more readily understood by a clinician than the log odds
ratio or the log hazard ratio (which are the interpretations of the regression parameters in the
corresponding statistical models). We will therefore refer to 6 as the “natural” parameter. We
note that this terminology is not at all restrictive, as in section 3 we do allow for (but do not
particularly recommend using) probability models in which 6 represents, say, the log odds ratio or
the log hazard ratio.

In the general case, we consider a transformation

p=1g(0) (1.34)

where 1) is some constant and ¢(-) is a link function used in the statistical model. We can thus
also define the probability model parameter scale (denoted as the 6-scale) for the parameter space
based on the relationship specified by eqn (1.34), and derive conversions between the p-scale and
the #-scale as

f-scale — p-scale w=g(6)y

(G

Under this parameterization, we note that it will generally be of more interest to consider at
the jth analysis a test statistic §; corresponding to the maximum likelihood estimate of 6, rather
than focusing on the maximum likelihood estimate X ; of . We thus define

0, =g (%) . (1.36)

Based on the above, we can also define an estimate scale (denoted as the é-scale) for statistics at
the jth analysis. We note that at the jth analysis, conversions between a measurement x on the
X-scale and a measurement 6 on the 6-scale are easily derived from eqn (1.36) as

p-scale — f-scale g=g! <ﬁ> (1.35)

f-scale — X-scale x=g(0)y

. . X
X-scale — f-scale =g! (j) (1.37)

We note that the f-scale is primarily of interest when providing an intuitive interface for one of
the statistical models presented in section 3. As is described in later sections, computations related
to group sequential inference will generally consider the standardized partial sum scale (S*-scale)
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for statistics and the standardized parameter scale (d-scale) for parameters. We assume that the
user will typically want to use only the “natural” scale (the -scale as defined by the probability
model) for input and output related to the parameter space. Hence, while the user will typically
be allowed to choose any of the unstandardized scales (as summarized in eqn (1.12)) for input and
output related to the sample space for statistics, we shall assume that the f-scale (estimating the
natural parameter) will be of far greater interest than the X-scale (potentially estimating some
transformation of the natural parameter). For this reason, we will generally suppress the true
X-scale and use the f-scale in its place. In fact, in the S+SeqTrial functions, it is the f-scale that
will be referred to as the “sample mean” scale. In this document, however, we will use the term
“sample mean” scale to refer to the X-scale and the term “estimate” scale to refer to the f-scale.
In this setting it is unnecessary to define a separate standardized é—scale, because we can consider
the X *-scale as a standardized form of the f-scale.

1.8 Impact of Boundary Scales on User Interface for S+SeqTrial

The major instances in which the user will need to consider the scale for expressing test statistics
include

1. Specification of parameters for the Bayesian, conditional futility, predictive futility scales, and
error spending scales

These scales for test statistics require input of additional parameters, some of which
must in turn be specified on a particular scale.

2. Specification of design family for the stopping boundaries.

The various families of group sequential designs described in section 8 are in turn based
on specific choices of scales for test statistics outlined above, or particular combinations
of those scales as described briefly below. The design parameters A,, Pi, R, and G,
will refer to boundary relationships on the scale(s) corresponding to the design family.
Simple relationships between stopping boundaries at successive relationships will tend
to exist only on the boundary scale corresponding to the group sequential design family.

3. Specification of exact, minimum, or maximum constraints for stopping boundaries.

The constrained boundaries are based on one or more of the design families. Hence
any user specified stopping boundary at a particular analysis time will be interpreted
according to the test statistic scale used in defining the constraint. (See section 11 for a
more detailed description of constraints on group sequential design family.)

4. Specification of display scale for the stopping boundaries.

The output stopping boundaries will be expressed on the scale specified by the display
scale. The spectrum of test statistic scales used for display is somewhat richer than the
spectrum for which design families have been designed.

5. Specification of test statistics for input to module routines for integration of the sampling
density, monitoring of the study, or reporting results of a final analysis.

6. Conversion of test statistics between individual scales.

Specifications of the scales is through definition of a seqScale object using the S+SeqTrial
function seqScale(). The required argument to that function is scaleType, which accepts a
character valued scalar which is one of ‘S’ (for partial sum statistic family), ‘X’ (for unified or
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sample mean statistic family), ‘Z’ (for normalized statistic family), ‘P’ (for fixed sample P value
statistic family), ‘B’ (for Bayesian family), ‘C’ (for conditional futility family), ‘H’ (for predictive
futility family), or ‘E’ (for error spending family). Some of the scales corresponding to these
design families require input of additional parameters, and this is effected through specification
of the argument scaleParameters as a numeric vector which has interpretation specific to the
scale family selected. An alternative (and generally easier) specification of the parameters makes
use of an appropriate selection of the additional arguments threshold, hypTheta, priorTheta,
priorVariation, pessimism, and boundaryNumber.

the additional parameters required for certain boundary scales reflect the parameters needed
for computation of the test statistics on those scales. The include

—the B-scale statistic’s definition is based on the mean ¢ and variance 72 of the prior distribution
for u, as well as a threshold u, for the computation of the posterior probability,

— the C-scale statistic’s definition is based on the threshold ¢ ; and the hypothesized value of
the mean p, to use in the computation of the conditional probability,

— the H-scale statistic’s definition is based on the threshold ¢ ; and the mean ¢ and variance
of 72 of the prior distribution for j, and

— the E,-, Ey-, Ec-, and Eg-scales are combined into a single error spending scale which then
requires specification of which of the four subscales is desired as well as the value of the
hypothesized means g, iy, L, OT fiqg-

Furthermore, within each of those four families of scales, combinations which use different
parameters for each of the four boundaries are useful in evaluation of the operating characteristics
of group sequential stopping rules and in the definition of families of group sequential designs.
Each of those scales will therefore need an additional indicator of the particular combination of
parameters to be used. Hence, the possible choices for the specification of scale parameters for
each of the statistics scales are as given below. When discussing the scales used for presentation of
boundaries (as opposed to statistics representing arbitrary possible outcomes), we sue the notation
aj, bj, cj, and d; to represent the stopping boundaries at the jth analysis as introduced in section 4
when the scale is either unimportant or clear. When it is necessary to distinguish the scale on which
the stopping boundaries are represented, we denote that with an additional subscript, e.g. axjs
Wjj» and ap; will represent the “a” boundary at the jth analysis on the sample mean, estimate,
and Bayesian scales, respectively. We use p, = po—, iy = pi—, fte = b4, and pq = po+ to represent
the hypotheses being rejected by the corresponding boundaries as discussed in sections 2 and 8.
We note that input of statistics to the S+SeqTrial seqScale function will generally be made on
the estimate () scale and input of parameters will generally be made on the probability model (6)
scale. These two scales are described in section 1.7.

S-scale seqScale (“S”) (no parameters needed)
X-scale seqScale (“X”) (no parameters needed)
Z-scale seqScale (“Z”) (no parameters needed)
P-scale seqScale (“P”) (no parameters needed)

B-scale Three families of subscales are possible where the interpretation of additional parameters
to seqScale(“B”,...) are as follows

0. scaleParameters = c(0,g 1 (¢/v), 7%, g (us/10)) (or priorTheta = g~ 1(( /),
priorVariation = 72, threshold = g~ !(u./v)) when used for boundaries or statistics

will correspond to B;((, 72, 11y
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1. scaleParameters = (1,9 %((/v), %) (or priorTheta = g~1({/¢), priorVariation
= 72) when used for boundaries will correspond to comparing the similarly transformed
test statistics to boundaries as follows

agj = 1—Bj((,7° tta = po-)
bpj = Bj((,7° = p-)
cgj = 1-— Bj(Cv 7_27 He = :u-l—)
dp; = Bj(¢, 7% pa = pio+)

where p— < pot+ < po— < py are hypotheses being tested in the group sequential clinical
test as described in section 2.

2. scaleParameters = ¢(2,w,72) (or priorVariation = 72, pessimism = w) when used
for boundaries will correspond to comparing the following statistics to boundaries as
follows

ag; = 1=Bj(( = pa+wT, 7° tta = pio-)
bpj = Bj(C=p—wr, 7 = p)

cgj = 1= Bj(C = pe+wr, 7% e = piy)
dp; = Bj(C=pa—wr, 7% pa = pioy)

where w is a measure of the pessimism which is to be sued in determining the prior
distribution when rejecting particular hypotheses, and u_ < por < po— < pg are
hypotheses being tested in the group sequential clinical test as described in section 2.

(C-scale Three families of subscales are possible where the interpretation of additional parameters
to seqScale(“C”,...) are as follows

0. scaleParameters=c(0,g '(tx,/¥), g (1«/1)) (or hypTheta = g~ (pus /1), threshold
= g !(tx,/1)) when used for boundaries or statistics will correspond to C;(ts;, fis)

1. scaleParameters = 1 (or hypTheta = “design”) when used for boundaries will corre-
spond to comparing the following statistics to boundaries as follows for j < J

ac;j = Cjlaxy, ta = pro-)
boj = 1—=Cjlbxym = p-)
coj = Cjlexysbe = py)

doj = 1-Cjldxy, 1a = po+)

where p— < pot+ < po— < py are hypotheses being tested in the group sequential clinical
test as described in section 2. For j = J, we define a.j = b.j = c.y = dc.j = 0.5.

2. scaleParameters = 2 (or hypTheta = “estimate”) when used for boundaries will cor-
respond to comparing the following statistics to boundaries as follows for j < J

acj = Cjlaxy, pa = ax)
bej = 1—=Cjlbsy, = bxy)
ccj = Cjlegype=cxy)
doj = 1-Cjldx, pa = dx,)

For j = J, we define a.j = boy = ccj = d.j = 0.5.

H-scale Three families of subscales are possible where the interpretation of additional parameters
to seqScale(“H”,...) are as follows
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0. scaleParameters = c(0,9 1 (¢/v), 72 g (t5,/¥)) (or priorTheta = g~ ((/%),
priorVariation = 7%, threshold = g~ !(t%,/t)) when used for boundaries or statistics

will correspond to Hj(ts;,¢, %)

1. scaleParameters = (1,9 1(¢/v), 72) (or priorTheta = g~ (¢ /%),

priorVariation = 72) when used for boundaries will correspond to comparing the
following statistics to boundaries as follows for j < J

aHj
b
CHj

du;

Hj(afjv Cv 7_2)

- HJ(bfjv Cv 7_2)

Hj(cfjv Cv 7_2)

- HJ(dfjv Cv 7_2)

For j = J, we define agy =byy=cygj=dgy=0.5.

2. scaleParameters = c(2,w,7'2) (or pessimism = w, priorVariation = 72 when used
for boundaries will correspond to comparing the following statistics to boundaries as

follows

aHj
b

CHj

Hy(asgy, € = tta + w7, 7)
1= Hj(bx;, ¢ = pp — wr,77)
Hj(cfjvc = Ue + WT, 7_2)

dgj = 1

where w is a measure of the

- HJ(dfjv C = Hqg — WT, 7_2)

pessimism which is to be used in determining the prior

distribution when rejecting particular hypotheses. For j = J, we define agy = by =

cgg=dgyj=0.5.

FE-scale Two families of subscales are possible where the interpretation of additional parameters

to seqScale(“E”,...) are as follows

0. scaleParameters = c(0,b, g (u/1)) (or boundaryNumber = c(“a”, “b”, “c”, “d”,)[b+
1], hypTheta = g~ '(u/®)) when used for boundaries of statistics will correspond to
Eo;j(1), Evi(p), Ecj(p), or Egi(p) according to whether b =0, 1,2, or 3, respectively.

1. scaleParameters = 1 (or no additional parameters specified) when used for boundaries
will correspond to the error spending functions for a stopping rule (see section 6.3) when
the seqScale object is supplied to S+SeqTrial functions seqgDesign () or seqBoundary/()
and will correspond to comparing the following statistics to boundaries as follows when
the seqScale object is supplied to S+SeqTrial function changeSeqScale ()

apj = FEqj(pa = po-)
bpj = Byl = p-)
cpj = Eojpe = py)
dpj = Eq(pa = poy)

The seqScale objects defined in the
lowing ways

1. The group sequential design family to be
G, is specified through

scale = seqgScale(...)

manner described above are then used in the fol-

used with the design parameters A, P., R4, and
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segDesign(...,design.family=scale,...)

where scale is a seqScale object corresponding to one of the “X”, “S” “Z” or “E” scale
families for stopping boundaries. (Group sequential design families defined for other scales
have not yet been implemented in S+SeqTrial.)

. User specification of exact values for stopping boundaries at specific analyses is effected
through

scale = seqScale(...)
bounds = seqBoundry(bndrymtz, scale)
segDesign(...,exact.constraint=bounds,ldots)

where bndrymtz is a numeric matrix containing the desired values specified on the boundary
scale specified by scale, which is a seqScale object corresponding to one of the scale families
for stopping boundaries. The boundary scale used for exact constraints must be compatible
with the boundary scale used for the design family: Only constraints expressed on the error
spending scale are valid with the error spending design family, and all scales except the error
spending scale are valid for constraints used with other design families.

. User specifications of minimum values for stopping boundaries at specific analyses is effected
through

scale = seqgScale(...)

bounds = seqBoundry(bndrymtz, scale)

segDesign(...,minimum. constraint=bounds,ldots)

where bndrymtz is a numeric matrix containing the desired values specified on the bound-
ary scale specified by scale, which is a seqScale object corresponding to one of the scale
families for stopping boundaries. The boundary scale used for minimum constraints must be
compatible with the boundary scale used for the design family: Only constraints expressed on
the error spending scale are valid with the error spending design family, and all scales except
the error spending scale are valid for constraints used with other design families.

. User specification of maximum values for stopping boundaries at specific analyses is effected
through

scale = seqgScale(...)

bounds = seqBoundry(bndrymtz, scale)
segDesign(...,maximum.constraint=bounds,...)

where bndrymtz is a numeric matrix containing the desired values specified on the bound-
ary scale specified by scale, which is a seqScale object corresponding to one of the scale
families for stopping boundaries. The boundary scale used for maximum constraints must be
compatible with the boundary scale used for the design family: Only constraints expressed on
the error spending scale are valid with the error spending design family, and all scales except
the error spending scale are valid for constraints used with other design families.

. User specification of the boundary scale for display of boundaries is effected through
scale = seqgScale(...)
seqDesign(...,display.scale=scale,...)

where scale is any valid seqScale object. (Note that the valid parameters for use with
input and output of test statistics or output of stopping boundaries are more varied than
those which are valid for design families.)
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6. User specification of the boundary scale for input of test statistics is effected through, for
instance,

scale = seqgScale(...)
seqInference(...,inScale=scale,...)

where scale is any valid seqScale object and corresponds to the scale that the seqInference ()
argument observed is measured on. (Note that the valid parameters for use with input and
output of test statistics or output of stopping boundaries are more varied than those which
are valid for design families.)
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2 Statistical Decision Rules

In conducting a clinical trial, we are most often interested in deciding how some new treatment
affects a clinical outcome. If the parameter p is a measure of that treatment effect, then the goal
of the clinical trial is often phrased in terms of making a decision for one of several hypotheses by
constructing a decision rule that defines for which outcomes a particular decision is made. Typically,
the statistical decision rule is constructed according to frequentist methods which quantify the
probability of observing particular data when some null hypothesis is true. Alternative approaches
can be bas on Bayesian methods which use the data along with some prior probability distribution
to quantify the probability that some hypothesis is true.

2.1 A Frequentist Approach: Hypothesis Testing

In classical hypothesis testing, we generally wish to discriminate among at most three hypotheses:
that the unknown mean is greater than the null hypothesis (Hy : p > pg), that the unknown
mean is less than the null hypothesis (H_ : u < pg), or that the data are consistent with the
null hypothesis (Hy : u = po). We note that in one-sided hypothesis testing, we may not try to
distinguish two of the hypotheses. For instance, when testing Hy against a higher alternative, we
may not distinguish between Hy and H_.

Although it is not uncommon for researchers to speak of deciding in favor of one of the above
hypotheses, we must recall that our frequentist inference is actually based on rejecting one or more
hypotheses. Thus, we speak of deciding for H only if we have rejected Hy and H_, and we speak
of deciding for H_ only if we have rejected Hy and H;. In the classical frequentist hypothesis
testing, we never decide for Hy. This is because for any finite sample size, there are, for instance,
samples that are typical both of Hy and Hy. For a finite sample size, it is always possible to find
some small € > 0 such that the distributions of the data are statistically indistinguishable when
W= po or when p = pg + €. However, when we are using the results of a hypothesis test to decide
whether to adopt a new treatment, if we do not reject Hy, we usually take an action that is in
essence rejecting H; and H_. Thus, we desire to develop a decision theoretic model under which
we can quantify the interpretation of a failure to reject Hy.

Such a model will demand a reformulation of our alternative hypotheses, because, as noted
above, with a finite sample size we can never reject the possibility that p is marginally smaller than
or greater than pg. Thus, we now formulate our alternative hypotheses as Hy @y > py and H_,
where py > po and p— < p). The values of the alternatives p— and gy can be chosen in one of
two ways. In the first scenario, the alternatives are chosen to correspond to differences in outcome
which it is clinically important to distinguish. Study sample sizes are then chosen to allow sufficient
statistical power to reject Hg when p = py or sufficient statistical power to reject Hy when p = p—
(note that it is not always possible to satisfy arbitrarily chosen power constraints with arbitrarily
chosen values of iy and p—). In the second approach, the available sample size is constrained, and
we instead compute the alternatives p— and p4 for which the test design has sufficient statistical
power.

In this framework, we can regard a two-sided hypothesis test as a combination of two one-sided
tests: an upper test of Hoy : p < poq versus Hy @ p > py and a lower test of Ho— : p > pg— versus
H_: p < p_. In the classical two-sided hypothesis test, we choose poy = po— = po. However, we
introduce the more general setting in which p— < poy+ < po— < p4 in order to accommodate more
flexible designs in the group sequential setting (see sections 8 and 9).

In order to maintain the same level of evidence for rejection of any hypothesis, we can choose a
study design for which the type I and type II errors are equal. Thus, if we conduct a one-sided level
a test of Hoy against H, (respectively, Hy_ against H_), we choose p (respectively, p_) such
that we reject Hoy (respectively, Hy_ with probability 1 — a when p = py (respectively, p = u_).
In a two-sided level 2« test of Hy (so po+ = po— = po and we falsely reject Hy, in favor of H
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with probability a and falsely reject Hy_ in favor of H_ with probability «/), we choose 4, p—, and
our sample size such that we reject Hoy with probability 1 — o when p = p— and we reject Hy_
with probability 1 — a when p = p4. Such a strategy guarantees that at the end of the study the
100(1 — 2a)% confidence interval will with probability 1 not contain both py and pgy, nor would
it contain both p_ and pg—. In this way, the study will with 100(1 — 2a))% confidence discriminate
between the null and alternative hypotheses for each of the overlaid one-sided hypothesis tests.

While the above formulation using a common criterion for statistical evidence is our preferred
approach, many users will choose power constraints at some level less than 1 — «. Hence, for
generality, we shall introduce the notation

Pr(reject Hoy for Hy; ppy) = ay
Pr(reject Hoy for Hy; puy) = By
Pr(reject Hyo_ for H_; up—) = «y
Pr(reject Ho— for H_; u_) = [ (2.1)

The two-sided hypothesis test constructed under this notation is then level «,, + ay. As noted
above, we shall most often recommend the choice o, = ay = o and 8, = By = 1 — «, which is
symmetric in the type I and type II statistical errors. As a rule, we shall adopt this latter convention
in this document, although the more general notation will be used when it is desirable to have the
widest application. in any case, in order to preserve the natural ordering of 4 > po > pot > p—,
we will demand that the following constraints be satisfied

a, < ﬁu
ap < By
oy +op <1 (2.2)

In choosing our hypotheses in the above symmetric fashion, we note that some values of p
do not belong strictly to any single hypothesis. For example, for a one-sided level « test of Ho4
versus H, having statistical power 1 — a to detect H,, if u > py, we can with 100(1 — )%
confidence state that our study will result in rejection of Hypy in favor of Hyy, and if p < po4,
we can with 100(1 — «)% confidence state that our study will result in rejection of Hy in favor
of Hyy. However, if gy < p < pg, we can not be 100(1 — «)% confident of either rejecting Ho,
or Hy. This would suggest that our rejection of Hypy can only be interpreted a priori as being
consistent with the decision that y > po+, and that rejection of Hy can only be interpreted a prior:
as being consistent with the decision that u < py (we note that at the completion of the study,
computation of confidence intervals will provide more precise quantification of our inference). The
interval (o4, p4) constitutes an equivocal region of our parameter space for the unknown mean g,
because it is not inconsistent (at the 100(1 — )% level of confidence) with either decision.

To formalize this idea, we define an equivocal region E@Q for a hypothesis test by

EQ = {p: Pr(reject Hoy for Hy;pu) < 1— a and Pr(reject Ho— for H_;pu) <1—a}.  (2.3)

The interpretation of the equivocal region will depend upon the particular application. For
instance, in one-sided tests of a new treatment against a placebo, the equivocal region should
carry the interpretation of levels of improvement that are not of sufficient clinical importance to
warrant increasing the sample size in order to be confident that they will be detected. In two-sided
tests comparing two treatments, the equivocal region should be interpreted as levels of difference
between the treatments that are so small as to allow decisions of equivalence. In any case, if the
equivocal region includes values of the mean that it is clinically important to distinguish from the
null hypothesis, the sample size should be increased to make the equivocal region smaller.
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2.2 A Bayesian Approach

We now consider a Bayesian approach to distinguishing among the hypotheses considered above.
In a Bayesian analysis, decisions are based on the posterior probability of a specific hypothesis.
There are a variety of equally valid ways of defining a Bayesian testing procedure. For instance,
one can make decisions for a null hypothesis when the posterior probability that the mean is in
some close neighborhood of the null hypothesis is sufficiently high, or one can make a decision
for a null hypothesis when the posterior probability that the mean is in either of the alternative
hypotheses is low. In our development here, we adopt the latter strategy. That is, in order to
maintain the greatest parallel with the frequentist approach, we choose to describe our decisions in
terms of rejecting hypotheses rather than acceptance of hypotheses.

We again consider the most general case of the superposition of two decision problems, which
we will continue to describe in terms of hypotheses. Hence we consider an upper pair of hypotheses
Hoy @ p < pog versus Hy @ p > pg and a lower pair of hypotheses Hg— : g > pg— versus
H_ : pu < pu_. We note that in one-sided decision problems, we again may not try to distinguish
two of the hypotheses.

For generality, we introduce the following notation for our decision rules

w> pot | X1,..0) = Bu
w<po-|X1,...) = Be
> py | Xi,.00) < ay
b | X1, ) < ag (2.4)

reject Hoy for Hy when Pr
reject Ho_ for H_ when Pr
reject Hy for Hpy when Pr
reject H_ for Hy_ when Pr

(
(
(
(

Under the above, we note that a decision is made for the null hypothesis only if both of the
alternatives have been rejected. Due to the natural ordering of the hypotheses, whenever the null
hypothesis has been rejected in favor H,, the alternative H_ has also been rejected by at least
the same criteria. Similar arguments hold for decisions in favor of H_. In order to preserve the
natural ordering of py > po— > poy > p—, we will again demand that the constraints specified by
eqn (2.2) be satisfied.

In choosing the values of the alternatives p_ and p4, parallels can be drawn to the frequentist
approaches to sample size determination. That is, we assume that the outcome of the study must
correspond to a decision for exactly one of the above hypotheses. In one approach, we choose
i+ (respectively, p_) to correspond to differences in outcome which it is clinically important to
distinguish. We then find the sample size which results in contiguous, nonoverlapping decision sets
for Hyy and H, (respectively, Hy_ and H_). Because it is not always possible to have contiguous
decision sets for all three hypotheses for arbitrary choices of «u,, ay,B,, and G, the value of p_
(respectively, ) must then be chosen to satisfy the probability constraints in eqn (2.4).

In a second approach, the available sample size is constrained, and we find the value of p4 and
u— that satisfy the probability constraints in eqn (2.4).
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3 Examples of Applications

The formulation of the fundamental model in section 1 applies directly to the case of a one sample
test for the mean of a normal distribution estimated from independent, identically distributed
observations. In fact, however, we can use the designs derived for this simple situation in a variety
of other useful clinical trial settings. In particular, we can consider the following departures from
the assumptions of the previous section.

1. Each random variable X;, ¢ = 1,..., N can represent a summary measure from a sampling
unit. For instance, in a two sample study, we might choose to describe our probability model
in terms of sampling units consisting of 1 subject sampled from population 1 and r subjects
sampled from population 2.

2. Each random variable X;,7 = 1,..., N can have a distinct mean p; and a distinct variance af.

For instance, we may design a clinical trial in which the best measure of treatment effect is the
slope of a linear dose-response relationship. The test statistic may be based on the efficient
scores, in which case each observation corresponding to the efficient score would potentially
have a different mean and variance (although presumably the mean of each observation would
depend in some way on a common parameter).

3. The distribution of the random variables X;, ¢ = 1,..., N need not be normal. Because
we are analyzing the data after groups of observations have been accrued, it will often be
the case that a central limit theorem will guarantee that the increments of information S; —
Sj—1 are approximately normally distributed. We will find in section 5 that the sampling
density for the group sequential statistic depends only upon the normal distribution for those
increments, and thus our methods are valid whenever those increments are approximately
normally distributed.

In the following we consider a variety of statistical models for which the group sequential
methods described herein are valid. In their most general form, we consider original observations

Y;,i=1,..., M with distributions depending on parameter of interest § and potentially on nuisance
parameters (v, v, ...) and covariates W;, i =1,..., M.

(It should be noted that the use of the notation M in this section refers to a sample size in an
untransformed setting. In later sections, we will use M to denote a random variable measuring
the analysis at which a clinical trial stopped. While such overlap of notation is undesirable, there
should not truly be any ambiguity, as it is only in this section that M will denote the sample size.)

(It should be further noted that this document describes the definition of the sample size N used
by the C code, which uses N to refer to count sampling units. S+SeqTrial defines the sample size
according to the total sample requirements across all arms, and thus the value of M as used in this
section corresponds to the output of S+SeqTrial.)

We assume that it is of interest to test a null hypothesis Hy : 6 = 0y using test statistic T(}_}), a
function of the observations Y = (Y1,...,Ya). We then relate this original model to observations
Xi, i =1,...,N made on N independent sampling units. The ith observation X; has moments
E(X;) = p; and Var(X;) = o2, with

L
wo= NZW
i=1
o? = iiﬁ (3.1)
2 )
N

representing the average tendencies for the moments across the population sampled. We further
consider a parameterization in which the most direct measure of treatment effect is measured by
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parameter 6, and that p is a function of that parameter

w=1g(0) (3.2)

where 1 is some constant and g(-) is a link function used in the statistical model. Under this
parameterization, we note that it will generally be of more interest to consider at the jth analysis
a test statistic éj corresponding to the maximum likelihood estimate of 6, rather than focusing
on the maximum likelihood estimate X; of y. In section 1.7 we defined transformations between
the estimate (6) scale and the sample mean (X) scale, as well as the é-, u-, and 6-scales for the
parameter space.

In each of the following models, we define the sampling unit, the observation X;, the moments
pi and o2, the averages u and o2, the link function g(-), and the constant . We also describe
the most typical ways in which the hypotheses 6y, 0+, and 8_ might be specified. In addition, we
describe the correspondences between the commonly used statistics in the original statistical model
(as might be obtained from computer output) and the statistics Yj, éj, Zj, and P;.

3.1 Normally Distributed Responses

When the treatment response is measured on a continuous scale, it is common to base statistical
inference on the assumption that the underlying observations are normally distributed. It should be
noted that these same models are valid for nonnormal data provided the group sizes are sufficiently
large as to allow the central limit theorem to provide a good approximation. This may not be a
good assumption when the distribution is markedly skewed, however in those cases the methods
described below for log normal responses may work.

It should be noted that in all of the models presented in this section, it is typically the case that
the variance ¢ is unknown. Hence, rather than using statistics which have the normal distribution,
one typically assumes a t distribution. In what follows, however, we will take the approach of using
the usual estimate of the variance, but continuing to use the normal based methods. We note that
such an approach is valid in large sample sizes. We also note that there is some evidence [11] to
suggest that if the statistics P; are taken from the t distribution, the small sample behavior of the
group sequential methodology parallels that of the small sample behavior of the t test in that same
data (which t test may also not be exact due to nonnormality of the underlying observations).

3.1.1 One Sample test of a Normal Mean

Suppose we sample independently from a population with Y; ~ N(0,v?) fori = 1,..., M. We wish
to test a null hypothesis about the population mean 8, Hy : § = 6, and in a fixed sample test we
perform a one sample Z test using test statistic

(V) = mw.

14

Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding
to a single observation. Hence, N = M, and the observations X; = Y; on those sampling units have
moments y; = 6 and o2 = 12, with averages u = 6 and 02 = v2. Under this parameterization, the
link function g(-) is merely the identity function g(#) = 6, and the constant ¢» = 1. The null and
alternative hypotheses are typically specified directly, with 8y = 0 being the usual choice for the
null hypothesis.

At the jth analysis, the statistic Yj is the sample mean of the first IN; observations, and
éj = Yj. In a typical situation, the variance v? is not known, and one would typically use the
sample variance as an estimate. For our purposes, we can usually assume sufficient sample sizes
such that a reasonable approximate test is obtained by using as Z; the one-sample t statistic. The
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statistic P; is the one-sided p value from such a test used to detect the alternative Hy : 0 > 6. If
only a two-sided P value is provided by statistical software (as is quite often the case), then P; is
half the two-sided P value when Z; > 0, and P; is 1 minus half the two-sided P value when Z; < 0.
As discussed above, it might be more robust to use the t distribution rather than the standard
normal distribution when the variance is unknown, hence it is probably easiest to use the P-scale
when using this statistical model.

3.1.2 Two Sample Test of Normal Means

Suppose we sample independently from two populations: a treatment group with Yy; ~ N (1, 1/12)
for i =1,...,M; and a comparison group with Ya; ~ N(ye,13) for i = 1,..., M. We wish to test
a null hypothesis about the difference in population means 6 = 1 — v2, Hg : 8 = 0y, and in a fixed
sample test we perform a two sample Z test using test statistic

2 2

For notational convenience, we define r = M; /M. Such a trial corresponds to our funda-
mental model with a sampling unit corresponding to a single observation from the comparison

group, and r observations from the treatment group. Hence, N = My, and the observations
X; = ZZZ:M_TH Yir/r — Ya2; on those sampling units have moments p; = 6 and a? = 1/12/7” + 1/22,

with averages u = 6 and 02 = v#/r 4+ v2. Under this parameterization, the link function g(-) is
merely the identity function g(f) = 6, and the constant ¢» = 1. The total sample size required in
the study (across both arms) is [r + 1] V.

In specifying the hypotheses, most often 8y and 64 or 6_ are specified directly. Typically, the
null hypothesis is y = 0. Alternative methods of specifying the hypotheses include: 1) specifying
the values of ;1 and 72 under the null hypothesis, and also the values of 71 and o under the
alternative hypothesis, and 2) specifying v; under each of the null and alternative hypotheses,
and assuming that o under both the null and alternative is equal to what v, is under the null.
In allowing for alternative specifications of the hypotheses, it should be noted that it is easy to
distinguish between the usual specification of 6y and 6, or §_ and the first alternative based on
the number of values given in the specification. Distinguishing between the usual specification and
the second alternative is not possible by such means, but it is truly unimportant. Treating those
two methods of specification the same will result in the exact same sample size calculation, because
in each case 0 — 6y is the same value. When a computer interface reports values back to a user,
those values may be 6§ = 77 — 72 (in the case of the usual specification or 47 (in the case of the
second alternative), and only the user need know which is which. In the case of the first alternative,
it probably is most straightforward to convert the input to the corresponding values of 6 and to
report those values.

At the jth analysis (and assuming the ratio between the number of measurements from the
first population and the number of measurements from the second population is r:1 for all j), the
statistic Yj is the sample mean of the first N; observations

1 TN]' 1 N]'
X, = — Vi, — — Yo,
j TNj; 14 Nj; 24y

and éj = Yj. In a typical situation, the variances v and v3 are not known, and one would typically
use the sample variances as estimates. For our purposes, we can usually assume sufficient sample
sizes such that a reasonable approximate test is obtained by using as Z; the two-sample t statistic
assuming unequal variances. The statistic P; is the one-sided P value from such a test used to
detect the alternative Hy : 8 > 6. If only a two-sided P value is provided by statistical software
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(as is quite often the case), then P; is half the two-sided P value when Z; > 0, and P; is 1 minus
half the two-sided P value when Z; < 0. As discussed above, it might be more robust to use the t
distribution rather than the standard normal distribution when the variance is unknown, hence it
is probably easiest to use the P-scale when using this statistical model.

It should be noted that although the above derivation assumes that the ratio between the num-
ber of measurements from the first population and the number of observations from the second
population is r:1 at each analysis, the statistical behavior of the group sequential test is not sub-
stantially affected by slight deviations from that ratio across the different interim analyses. Hence
at the design stage, it is sufficient to assume a constant value for r, and then when actually mon-
itoring the study to use the observed r at each analysis. This is equivalent to just ignoring any
variation in r across analysis times and using the value of P; as defined above at each analysis.

Of course, major deviations in the distribution of sample sizes from the two populations across
analysis times will affect the statistical behavior of the group sequential test when boundaries are
determined solely on the basis of the number of sampling units accrued to date. This problem is
alleviated for the most part when stopping boundaries are determined on the basis of the proportion
of the planned maximal statistical information accrued to date. This aspect is discussed further in
section 12.

3.1.3 Test of Linear Regression Slope

Suppose we sample paired observations (Y;, W;) for ¢ = 1,..., M, with response variable Y; ~
N (7;,v?) and where we assume a regression model based on covariates W; as v; = a + W;. We
wish to test a null hypothesis about the linear slope 6, Hy : 6 = 0, and in a fixed sample test we use
as test statistic the t test based on the estimate of the slope § = S V;[W; = W]/ M [W; — W

and its standard error se(f) = ﬁ/\/Ef\il[WZ — W2, where 0?2 = Zf\il[YZ — & —OW)?/[M — 2] is
the estimated residual mean squared error. Thus we use test statistic

_’ Ez 1Y[ ]

/M

which has a t distribution with M — 2 degrees of freedom. For large M, this distribution is well
approximated by a standard normal distribution.

Such a trial corresponds to our fundamental model with a sampling unit corresponding to a
single observation. Hence, N = M, and the observations X; = Y;[W; — W] on those sampling units
have moments p; = [W; — X]y; and o2 = [W; — W]?v2, with averages u = Vi and 0% = v2Vyy,
where Vi = S°M [W; —W]?/M is the variance of the covariates. Under this parameterization, the
link function g(-) is merely the identity function g(6) = 0, and the constant ¢ = Vyy.

An alternative correspondence to our fundamental model again has a sampling unit correspond-
ing to a single observation with N = M, but the observations on those sampling units are taken
to be X; = Y;[W; — W]/Viy having moments y; = [W; — X|v;/Viw and o? = [W; — W|*?/Vi3,
leading to averages u = 6 and 0% = v?/Viy, where again Viy = Zf\il[WZ — W]?/M is the variance
of the covariates. Under this parameterization, the link function g(-) is merely the identity function
g(f) = 0, and the constant ¢ = 1.

In either correspondence to the fundamental model, the null and alternative hypotheses are
typically specified directly, with 6y = 0 being the usual choice for the null hypothesis.

At the jth analysis (and assuming the mean of the covariates is W and the variance of the
covariates is Vyy for all j), the statistic Yj is the sample mean of the first N; observations. In the
first correspondence, we then have

7

EI %I



Technical Overview, Section 3—6 Sep 07, Page 32

N.
_ 1 < _
Xj=—=—> YW, - W],
J Nji:1 [ ]

and in the second correspondence, we have

N;

_ 1 I
J N] VW ;_ 1: [ ]

In either case we have that éj is just the least squares estimate of the slope based on the first N;
observations. For our purposes, we can usually assume sufficient sample sizes such that a reasonable
approximate test is obtained by using as Z; the t statistic for the test of the slope. The statistic
Pj is the one-sided P value from such a test used to detect the alternative H, : 6 > 0. If only a
two-sided P value is provided by statistical software (as is generally the case), then P; is half the
two-sided P value when Z; > 0, and P; is 1 minus half the two-sided P value when Z; < 0. As
discussed above, it might be more robust to use the t distribution rather than the standard normal
distribution when the variance is unknown, hence it is probably easiest to use the P-scale when
using this statistical model.

It should be noted that although the above derivation assumes that the mean W and variance
Vv for the covariates is constant at each analysis, the statistical behavior of the group sequential
test is not substantially affected by slight deviations from those values across the different interim
analyses. Hence at the design stage, it is sufficient to assume constant value for W and Viy, and
then when actually monitoring the study to use the observed values at each analysis. This is
equivalent to just ignoring any variation in W and Viy across analysis times and using the value of
P; as defined above at each analysis.

Of course, major deviations in the distribution of covariates across analysis times will affect
the statistical behavior of the group sequential test when boundaries are determined solely on the
basis of the number of sampling units accrued to date. This problem is alleviated for the most part
when stopping boundaries are determined on the basis of the proportion of the planned maximal
statistical information accrued to date. This aspect is discussed further in section 12.

We note that a two sample test of equality between means assuming equal variances is equivalent
to a test of linear slope in a regression model when the covariates W; are dichotomous. The same
inference is obtained under either the regression model described here or the two sample model

described in section 3.1.2 with v? = v/3.

3.1.4 Test of Equality of Means Among K Groups (ANOVA)

Suppose we sample independently from K populations with Yj; ~ A (y,v?) fori =1,..., M}, and

k =1,..., K. For notational convenience, we define M = Zle My, and ¥ = (rq,...,7K), where
ri = My /M is the proportion of the total sample size that is apportioned to the kth group. We
wish to test a null hypothesis about the equality of population means v; = 79 = - -+ = v, and in

a fixed sample test we perform a F test from a one-way analysis of variance (ANOVA).

Such a trial cannot be couched in our fundamental model. The F statistic is asymptotically
distributed according to a chi square distribution as the sample sizes within every group gets large,
and that distribution would be approximately normal only as the number of groups K approaches
infinity. Hence, the methods we derive for group sequential tests will not apply directly to this
statistical model. We do present here sample size formula that can apply to this setting for fixed
sample trials. The null hypothesis is understood to be exact equality of the means in this model,
and alternative hypothesis can be specified either by listing the K values 1, ¥2, ..., VK, or by
providing the variance of the values for the +’s.
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The sample size formula for the K-sample problem can be derived by considering the regression
model in which dummy variables are fit for groups 2 through K, and then testing that those K —1
regression parameters are simultaneously equal to 0. If we assume that ? is known, the test
statistic has a noncentral x% _;(6?) distribution with K — 1 degrees of freedom and noncentrality
parameter d = MV, /v? where

K K 2
Vy=4> mai - [Z Tk')/k] (37)
k=1 k=1

is a weighted variance of the population means. Note that 62 = 0 under Hy, and in that case the
test statistic has a central x? distribution.

In experimental design, we often desire to find a sample size which would under some specified
alternative hypothesis supply prespecified power § to reject the null hypothesis when performing
a level @ ANOVA. To obtain a level « test, we compare the ANOVA test statistic to the critical
value X%(_I(O, 1 — a) which is the upper ath quantile of the central chi square distribution with
k — 1 degrees of freedom. The distribution of the test statistic depends on the alternative only
through the value V. Thus we need to find the value of M such that a random variable U having
a noncentral chi square distribution with K — 1 degrees of freedom and noncentrality parameter
MV, /v? satisfies

Pr(U > xx_1(0,1—a)) = 5.

In S-Plus this can be effected using the following code (where alpha = « is the size of the test,
beta = 3 is the desired power, gamma = 5 = (71, ...,vK) is the vector of population means under
the alternative, vrnc = 2 is the within group variance, and r = 7 is the vector of sample size
proportions to be accrued to each group)

K <- length (gamma)

crit.value <- qchisq ( 1-alpha, K-1)

noncent <- (sum (r * gammad) - sum (r * gamma)2 ) / vrnc
pwr <- 1 - pchisq (crit.value, K-1, (1:1000) * noncent)
group.sample.sizes <- r * (sum (pwr < 1 - beta) + 1)

The vector group.sample.sizes = (M, ..., Mk).

3.2 Lognormal Responses

When dealing with continuous positive response variables that are heavily skewed, it is not uncom-
mon to assume a lognormal distribution for those variables. Such an assumption is equivalent to
assuming that the logarithm of the response variable has a normal distribution. A similar trans-
formation of the data is also often used when the data exhibit a mean-variance relationship in
which the variance of the response variable is proportional to the square of the mean, even though
the response variable might not have the lognormal distribution. As noted above with the normal
model, due to the central limit theorem, the inference based on assuming a normal model for log
transformed response is fairly robust to departures from normality.

Analyses based on the normal model for the log transformed response can be viewed as inference
based on the mean of the log response. Such does not have an easy interpretation on the original
response scale. However, so long as the log response has a symmetric distribution (which is certainly
satisfied by the normal model), the mean log response is the median log response. The median is
easily back transformed to the original response scale. Hence, we consider these models based on
log transformed response to be inference about the median and the median ratio. We note that
inference could also be considered on the basis of the geometric mean and the ratio of geometric
means of the distributions of the original response.
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In the following, it is assumed that a user would want to work with the median of the original
response variables, rather than working with summary measures of the transformed responses. This
is the most natural model, however, in the event that it were desired to work on the transformed
scale, the correspondences discussed in each subsection would hold exactly, with the exception that
the parameter of interest would be the log median log(6) or the difference in log medians and the
link function g(-) would be the identity function g(logf) = log(0).

3.2.1 One Sample Test of a Lognormal Median

Suppose we sample independently from a population with U; = log(Y;) ~ N (log(f),v?) for i =
1,..., M. We wish to test a null hypothesis about the population median 8, Hy : § = 0y, and in a
fixed sample test we perform a one sample Z test using test statistic

1%

Such a trial corresponds exactly to the model described in section 2.1 for the transformed
response and a transformed parameter of interest. Hence, N = M, and the observations X; =

U; = log(Y;) on those sampling units have moments p; = log(f) and ¢ = v?, with averages

p = log(#) and o2 = v2. Under this parameterization, the link function g(-) is the logarithmic
function g(#) = log(#), and the constant ¢ = 1. The null and alternative hypotheses are typically
specified directly, with 8y = 1 being the usual choice for the null hypothesis.

At the jth analysis, the statistic Yj is the sample mean of the first N; logarithmically trans-
formed observations, and éj = exp(yj). In a typical situation, the variance v? is not known, and
one would typically use the sample variance as an estimate. For our purposes, we can usually
assume sufficient sample sizes such that a reasonable approximate test is obtained by using as Z;
the one-sample t statistic on the log transformed observations. The statistic P; is the one-sided p
value from such a test used to detect the alternative Hy : 8 > y. If only a two-sided P value is
provided by statistical software (as is quite often the case), then P; is half the two-sided P value
when Z; > 0, and P; is 1 minus half the two-sided P value when Z; < 0. As discussed above, it
might be more robust to use the t distribution rather than the standard normal distribution when
the variance is unknown, hence it is probably easiest to use the P-scale when using this statistical

model.

3.2.2 Two Sample Test of Lognormal Medians

Suppose we sample independently from two populations: a treatment group with Uy; = log(Yy;) ~
N(log(v1),v3) for i = 1,..., My and a comparison group with Us; = log(Ya;) ~ N (log(72), v3) for
i=1,..., Ms. We wish to test a null hypothesis about the ratio of population medians 6 = ~; /7,
Hy : 0 = 0y, and in a fixed sample test we perform a two sample Z test using test statistic

T(}_}) _ [UlMl — UQMz] — log(eo) '

For notational convenience, we define r = M; /M,. Such a trial corresponds to our fundamental
model with a sampling unit corresponding to r observations from the treatment group (population
1), and a single observation from the comparison group (population 2). Hence, N = Ms, and the
observations X; = Zzi:ri_r+1 Ui /r — Us; on those sampling units have moments p; = log(6) and
0?2 = V2 /r+v3, with averages y = log(#) and 0? = 1?2 /r+v3. Under this parameterization, the link
function g(+) is the logarithmic function g(f) = log(#), and the constant ¢» = 1. The total sample
size required in the study (across both arms) is [r 4+ 1] N.
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In specifying the null hypothesis, most often 8y and 64 or 6_ are specified directly. Typically, the
null hypothesis is §y = 1. Alternative methods of specifying the hypotheses include: 1) specifying
the values of 71 and 9 (the medians of the respective distributions) under the null hypothesis, and
also the values of v and 7, under the alternative hypothesis, and 2) specifying ~; under each of
the null and alternative hypotheses, and assuming that 7o under both the null and alternative is
equal to what «; is under the null. In allowing for alternative specifications of the hypotheses, it
should be noted that it is easy to distinguish between the usual specification of 6y and 6, or 6_
and the first alternative based on the number of values given in the specification. Distinguishing
between the usual specification and the second alternative is not possible by such means, but it is
truly unimportant. Treating those two methods of specification the same will result in the exact
same sample size calculation, because in each case 6 /6 is the same value. When a computer
interface reports values back to a user, those values may be 6 = 71/, (in the case of the usual
specification or v; (in the case of the second alternative), and only the user need know which is
which. In the case of the first alternative, it probably is most straightforward to convert the input
to the corresponding values of # and to report those values.

At the jth analysis (and assuming the ratio between the number of measurements from the
first population and the number of measurements from the second population is r:1 for all j), the
statistic Yj is the sample mean of the first N; logarithmically transformed observations

1 TN]' 1 N]'
X, = — Uy, — — Us;
j TNsz_; 17 NJ; 21y

and éj = exp(yj). In a typical situation, the variances v? and v2 are not known, and one would
typically use the sample variances as estimates. For our purposes, we can usually assume sufficient
sample sizes such that a reasonable approximate test is obtained by using as Z; the two-sample
t statistic assuming unequal variances. The statistic P; is the one-sided P value from such a test
used to detect the alternative Hy : 6 > 6y. If only a two-sided P value is provided by statistical
software (as is quite often the case), then P; is half the two-sided P value when Z; > 0, and P; is
1 minus half the two-sided P value when Z; < 0. As discussed above, it might be more robust to
use the t distribution rather than the standard normal distribution when the variance is unknown,
hence it is probably easiest to use the P-scale when using this statistical model.

It should be noted that although the above derivation assumes that the ratio between the num-
ber of measurements from the first population and the number of observations from the second
population is r:1 at each analysis, the statistical behavior of the group sequential test is not sub-
stantially affected by slight deviations from that ratio across the different interim analyses. Hence
at the design stage, it is sufficient to assume a constant value for r, and then when actually mon-
itoring the study to use the observed r at each analysis. This is equivalent to just ignoring any
variation in r across analysis times and using the value of P; as defined above at each analysis.

Of course, major deviations in the distribution of sample sizes from the two populations across
analysis times will affect the statistical behavior of the group sequential test when boundaries are
determined solely on the basis of the number of sampling units accrued to date. This problem is
alleviated for the most part when stopping boundaries are determined on the basis of the proportion
of the planned maximal statistical information accrued to date. This aspect is discussed further in
section 12.

3.2.3 Test of Log Median Regression Slope

Suppose we sample paired observations (Y;, W;) for i = 1,..., M, with transformed response vari-
able U; = log(Y;) ~ N (v;,v?) and where we assume a regression model based on covariates W;
as v; = a + log(0)W;. We wish to test a null hypothesis about the back transformed linear slope
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6 (which has interpretation as the median ratio between groups differing by one unit in their co-
variate values), Hy : 6 = 1, and in a fixed sample test we use as test statistic the t test based
on the estimate of the slope log(f) = EZ LUiW; = W) EZ (Wi — W]? and its standard error

se(log(0)) = V/\/ZZ Wi = W2, where 02 = "M [U; — & — log(0)W;]?/[M — 2] is the estimated
re51dua1 mean squared error. Thus we use test statistic

7y _ St Ul — W)
@Zl ~ T

which has a t distribution with M — 2 degrees of freedom. For large M, this distribution is well
approximated by a standard normal distribution.

Such a trial corresponds to our fundamental model with a sampling unit corresponding to a
single observation. Hence, N = M, and the observations X; = U;[W; — W] on those sampling units
have moments j; = [W; — X|v; and o2 = [W; — W]?v?, with averages u = log(0)Viy and o2 = v*Viy,
where Viy = Ef\i | [W; —W]?/M is the variance of the covariates. Under this parameterization, the
link function g(-) is the logarithmic function g(#) = log(#), and the constant ¥ = Vyy .

An alternative correspondence to our fundamental model again has a sampling unit correspond-
ing to a single observation with N = M, but the observations on those sampling units are taken to
be X; = U;[W; — W]/Viy having moments u; = [W; — X]~;/Viv and a? = [W; —W]21/2/VV2V, leading
to averages u = log(f) and o2 = v?/Vjy, where again Vi = Zf\il[WZ — W]?/M is the variance
of the covariates. Under this parameterization, the link function g(-) is the logarithmic function
g(6) = log(0), and the constant ¢ = 1.

In either correspondence to the fundamental model, the null and alternative hypotheses are
typically specified directly, with 6y = 1 being the usual choice for the null hypothesis.

At the jth analysis (and assuming the mean of the covariates is W and the variance of the
covariates is Vyy for all j), the statistic Yj is the sample mean of the first N; observations. In the
first correspondence, we then have

9

1 &
Xj =% > Ui -
J =1
and in the second correspondence, we have

N

— 1 ! —
X, = S UW; - W),
J N]VW g [ ]

In either case we have that éj is just the exponentiation of the least squares estimate of the slope
based on the first IV; observations. For our purposes, we can usually assume sufficient sample sizes
such that a reasonable approximate test is obtained by using as Z; the t statistic for the test of
the slope. The statistic P; is the one-sided P value from such a test used to detect the alternative
Hy : 6> 0. If only a two-sided P value is provided by statistical software (as is generally the case),
then P; is half the two-sided P value when Z; > 0, and P; is 1 minus half the two-sided P value
when Z; < 0. As discussed above, it might be more robust to use the t distribution rather than
the standard normal distribution when the variance is unknown, hence it is probably easiest to use
the P-scale when using this statistical model.

It should be noted that although the above derivation assumes that the mean W and variance
Vv for the covariates is constant at each analysis, the statistical behavior of the group sequential
test is not substantially affected by slight deviations from those values across the different interim
analyses. Hence at the design stage, it is sufficient to assume constant value for W and Vjy, and
then when actually monitoring the study to use the observed values at each analysis. This is
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equivalent to just ignoring any variation in W and Vjy across analysis times and using the value of
P; as defined above at each analysis.

Of course, major deviations in the distribution of covariates across analysis times will affect
the statistical behavior of the group sequential test when boundaries are determined solely on the
basis of the number of sampling units accrued to date. This problem is alleviated for the most part
when stopping boundaries are determined on the basis of the proportion of the planned maximal
statistical information accrued to date. This aspect is discussed further in section 12.

We note that a two sample test of equality between medians assuming equal variances of the log
transformed response (so variance proportional to the means for the original response) is equivalent
to a test of linear slope in a regression model when the covariates W; are dichotomous. The same
inference is obtained under either the regression model described here or the two sample model

described in section 3.2.2 with v? = v3.

3.2.4 Test of Equality of Medians Among K Groups (ANOVA)

Suppose we sample independently from K populations with Ug; = log(Yg;) ~ N (log(yk), v?) for

i =1,....,M; and k = 1,..., K. For notational convenience, we define M = Zle M;j. and
7= (ry,...,7x), where rp = My, /M is the proportion of the total sample size that is apportioned
to the kth group. We wish to test a null hypothesis about the equality of population medians
Y1 =72 = -+ = vk, and in a fixed sample test we perform a F test from a one-way analysis of

variance (ANOVA) on the log transformed responses.

Such a trial cannot be couched in our fundamental model. The F statistic is asymptotically
distributed according to a chi square distribution as the sample sizes within every group gets large,
and that distribution would be approximately normal only as the number of groups K approaches
infinity. Hence, the methods we derive for group sequential tests will not apply directly to this
statistical model. We do present here sample size formula that can apply to this setting for fixed
sample trials. The null hypothesis is understood to be exact equality of the medians in this model,
and the alternative hypothesis can be specified either by listing the K values v, vs, ..., VK, or by
providing the variance of the values for the log(v)’s

The sample size formula for the K-sample problem can be derived by considering the regression
model in which dummy variables are fit for groups 2 through K, and then testing that those K —1
regression parameters are simultaneously equal to 0. If we assume that % is known, the test
statistic has a noncentral x2 _;(6?) distribution with K — 1 degrees of freedom and noncentrality
parameter dy = M Vi) /v? where

2
‘/log('y Z Tk log 'Wf [Z Tk log Tk ] (37)

is a weighted variance of the population means. Note that 6> = 0 under Hy, and in that case the
test statistic has a central y? distribution.

In experimental design, we often desire to find a sample size which would under some specified
alternative hypothesis supply prespecified power § to reject the null hypothesis when performing
a level @ ANOVA. To obtain a level « test, we compare the ANOVA test statistic to the critical
value X%(_I(O, 1 — a) which is the upper ath quantile of the central chi square distribution with
k — 1 degrees of freedom. The distribution of the test statistic depends on the alternative only
through the value V. Thus we need to find the value of M such that a random variable U having
a noncentral chi square distribution with K — 1 degrees of freedom and noncentrality parameter
MV, /v? satisfies

Pr(U > x%_1(0,1—a)) = 8.
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In S-Plus this can be effected using the following code (where alpha = « is the size of the test,
beta = 3 is the desired power, gamma = 5 = (71, ...,vk) is the vector of population means under
the alternative, vrnc = 2 is the within group variance, and r = 7 is the vector of sample size
proportions to be accrued to each group)

K <- length (gamma)

crit.value <- qchisq ( 1-alpha, K-1)

noncent <- (sum (r * log(gamma) 2) - sum (r * log(gamma)) 2 ) / vrnc
pwr <- 1 - pchisq (crit.value, K-1, (1:1000) * noncent)
group.sample.sizes <- r * (sum (pwr < 1 - beta) + 1)

The vector group.sample.sizes = (M, ..., Mk).

3.3 Dichotomous Responses

In many clinical trials, the outcome is measured on a binary scale: success or failure. The summary
measure used to describe the probability distribution for the response variable is typically either
the binomial proportion (the probability of success) or the binomial odds (the odds of success).
Treatment effects are, respectively, summarized as the difference in binomial proportions or the
odds ratio.

In this application, we assume that sample sizes are sufficiently large to allow inference based
on the normal approximation to the binomial distribution.

3.3.1 One Sample Test of a Binomial Proportion

Suppose we have a random sample of independent Bernoulli random variables with Y; ~ B(1, ) for
i=1,...,M. We wish to test a null hypothesis about the population mean 6, Hy : # = 8y, and in
a fixed sample test we perform a one sample Z test using test statistic

(Y — 6o]

T(Y)=VM—= =
Yaur(l—Yar)

Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding
to a single observation. Hence, N = M, and the observations X; = Y; on those sampling units
have moments y; = 6 and 0? = (1 — 6), with averages 4 = 6 and 02 = §(1 — ). Under this
parameterization, the link function g(-) is merely the identity function g(6) = 6, and the constant
P =1.

At the jth analysis, the statistic X; is the sample mean of the first IN; observations, and
éj = Yj. In a typical situation, the variance (1 — ) is not known, and one would typically use
either the variance under the null hypothesis or, more usually, the maximum likelihood estimate
éj(l — éj) as an estimate. The test statistic Z; is just the test statistic for a one sample test of a
binomial proportion as given above, and the statistic P; is the one-sided P value from such a test
used to detect the alternative Hy : 6 > 6y. If only a two-sided P value is provided by statistical
software (as is quite often the case), then P; is half the two-sided P value when Z; > 0, and P; is
1 minus half the two-sided P value when Z; < 0.

3.3.2 Two Sample Test of Binomial Proportions

Suppose we sample independently from two populations: a treatment group with Yy; ~ B(1,71)
for i = 1,..., My and a comparison group with Y5; ~ B(1,v2) for i = 1,..., My. For notational
convenience, we define r = M;/M;. We wish to test a null hypothesis about the difference in
population probabilities of success 0 = v1 — 9, Hg : 0 = 0y, and in a fixed sample test we perform
a two sample Z test using test statistic
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[Ying — You,) — 6o
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Such a trial corresponds to our fundamental model with a sampling unit corresponding to a
single observation from the comparison group (population 2), and r observations from the treatment
group (population 1). Hence, N = My, and the observations X; = EZZ:M_TH Yir/r — Ya; on those
sampling units have moments y; = 6 and o2 = y1[1 — v1]/7 + ¥2[1 — 2], with averages u = 6 and
02 = [l — y]/r + 72[l — 72]. Under this parameterization, the link function g(-) is merely the
identity function g(f) = 6, and the constant ¢ = 1.

At the jth analysis (and assuming the ratio between the number of measurements from the
treatment group and the number of measurements from the comparison group is r:1 for all j), the

statistic Yj is the sample mean of the first N; observations

1 TN]' 1 N]'
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and éj = Yj. In a typical situation, the variance must be estimated because v and +5 are not
known, and one would typically use the sample means 71j and 72j as estimates for v; and o,
respectively. The statistic Z; is the Z test statistic comparing two binomial proportions, as given
above. This is the signed square root of Pearson’s chi square statistic. The statistic P; is the
one-sided P value from the Z test used to detect the alternative Hy : 6 > 6p. If only a two-sided P
value is provided by statistical software (as is quite often the case), then P; is half the two-sided P
value when Z; > 0, and P; is 1 minus half the two-sided P value when Z; < 0.

It should be noted that although the above derivation assumes that the ratio between the num-
ber of measurements from the first population and the number of observations from the second
population is r:1 at each analysis, the statistical behavior of the group sequential test is not sub-
stantially affected by slight deviations from that ratio across the different interim analyses. Hence
at the design stage, it is sufficient to assume a constant value for r, and then when actually mon-
itoring the study to use the observed r at each analysis. This is equivalent to just ignoring any
variation in r across analysis times and using the value of P; as defined above at each analysis.

Of course, major deviations in the distribution of sample sizes from the two populations across
analysis times will affect the statistical behavior of the group sequential test when boundaries are
determined solely on the basis of the number of sampling units accrued to date. This problem is
alleviated for the most part when stopping boundaries are determined on the basis of the proportion
of the planned maximal statistical information accrued to date. This aspect is discussed further in
section 12.

T(Y) =

3.3.3 One Sample Test of Binomial Odds

Suppose we have a random sample of independent Bernoulli random variables with Y; ~ B(1,~) for
i=1,..., M. We wish to test a null hypothesis about the population odds of success 0 = v/[1 -],
Hy : 0 = 6. One possible approach in a fixed sample test is to use the score test for the intercept
in a logistic regression model having no covariates. We thus perform a one sample Z test using test
statistic

{Yar —e®/[L+ ]}
Yu(l—=Yy)

T(Y)=vM

Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding
to a single observation. Hence, N = M, and the observations X; = Y; on those sampling units have
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moments y; = e/ /[14¢?] and 02 = (1 —~), with averages 1 = €’ /[1 +¢€’] and 62 = v[1 —~]. Under
this parameterization, the link function g(-) is the function g(#) = €’/[1 + €], and the constant
P =1.

At the jth analysis, the statistic Yj is the sample mean of the first IN; observations, and
éj = X;/[1-X,]. In a typical situation, the variance (1 —=) is not known, and one would typically
use either the variance under the null hypothesis or, more usually, the maximum likelihood estimate
X ;[1—X] as an estimate. The test statistic Z; is just the test statistic for a one sample test of a
binomial proportion as given above, and the statistic P; is the one-sided P value from such a test
used to detect the alternative Hy : 6 > 6y. If only a two-sided P value is provided by statistical
software (as is quite often the case), then P; is half the two-sided P value when Z; > 0, and P; is
1 minus half the two-sided P value when Z; < 0.

An alternative test statistic in the fixed sample case can be based on the Wald test of the
intercept from a logistic regression model having no covariates. This corresponds to a test based
on a logarithmic transformation of the maximum likelihood estimate of the odds, with a standard
error derived using the delta method. Hence, in a fixed sample setting we might use test statistic

N log(Yar/[1 — Y um]) — log(6
() = Va7 R/ 1L Vo)~ log(tn)
Yu(1-Yu)

Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding
to a single observation. Hence, N = M, but the observations X; are not easily characterized. We
can, however, define averages y = log(6) and 0% = 1/{y[1 —~]}. Under this parameterization, the
link function g(-) is the function g(#) = log(#), and the constant ¢ = 1.

At the jth analysis, the statistic X ; is the estimate of the intercept in a logistic regression model

having no covariates based on the first NV; observations, and éj = ¢Xi. In a typical situation, the
variance 1/{7[1 —~]} is not known, and one would typically use either the variance under the null
hypothesis or, more usually, the maximum likelihood estimate 1/{X;[1 — X;]} as an estimate. The
test statistic Z; is just the test statistic for the intercept in the logistic regression model described
above, and the statistic P; is the one-sided p value from such a test used to detect the alternative
Hy : 0 > 6. If only a two-sided P value is provided by statistical software (as is quite often the
case), then P; is half the two-sided P value when Z; > 0, and P; is 1 minus half the two-sided P
value when Z; < 0.

3.3.4 Two Sample Test of Binomial Ratio

Suppose we sample independently from two populations: a treatment group with Yy; ~ B(1, 1)
for i = 1,..., My and a comparison group with Y5; ~ B(1,v2) for i = 1,..., My. For notational
convenience, we define r = Mj /My. We wish to test a null hypothesis about the ratio of odds of
success in the two populations 6 = y1[1 — 2] /{72[l — 1]}, Ho : @ = 1, and in a fixed sample test
we perform the score test from a logistic regression model with a dichotomous covariate. Such a
test is equivalent to the signed square root of Pearson’s chi square test and the two sample Z test
of binomial proportions, with test statistic

[Yin, — Yous) — 6o
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Such a trial corresponds exactly to the model specified in section 3.3.2 above.

An alternative test could be based on the asymptotic distribution of the log odds ratio log(é) =
log(41[1 — A2)/{A2[l — %))}, where 41 = 71M1 and Ao = 72M2. The statistic is thus the Wald
test of the slope parameter in a logistic regression with binary predictor. This corresponds to our
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fundamental model with a sampling unit corresponding to a single observation from the comparison
group, and r observations from the treatment group. Hence, N = My, and the average moments
of our observations are X; = Yi; — ZZ:M_TH Yor/r on those sampling units p = log(f) and
0? = 1/{rm1[l — 1]} + 1/{72[l — 72]}. Under this parameterization, the link function g(-) is the
log function g(#) = log(#), and the constant ¢ = 1.

At the jth analysis (and assuming the ratio between the number of measurements from the
first population and the number of measurements from the second population is r:1 for all j), the
statistic Yj = log(éj) is the log odds ratio estimate based on the first IV; observations. In a typical
situation, the variance must be estimated because ~; and 2 are not known, and one would typically
use the sample means 71j and 72j as estimates for 7, and g, respectively. The statistic Z; is the
Z test statistic from a logistic regression analysis. The statistic P; is the one-sided P value from
the Z test used to detect the alternative Hy : 8 > 6y. If only a two-sided P value is provided by
statistical software (as is quite often the case), then P; is half the two-sided P value when Z; > 0,
and P; is 1 minus half the two-sided P value when Z; < 0.

It should be noted that although the above derivation assumes that the ratio between the num-
ber of measurements from the first population and the number of observations from the second
population is r:1 at each analysis, the statistical behavior of the group sequential test is not sub-
stantially affected by slight deviations from that ratio across the different interim analyses. Hence
at the design stage, it is sufficient to assume a constant value for r, and then when actually mon-
itoring the study to use the observed r at each analysis. This is equivalent to just ignoring any
variation in r across analysis times and using the value of P; as defined above at each analysis.

Of course, major deviations in the distribution of sample sizes from the two populations across
analysis times will affect the statistical behavior of the group sequential test when boundaries are
determined solely on the basis of the number of sampling units accrued to date. This problem is
alleviated for the most part when stopping boundaries are determined on the basis of the proportion
of the planned maximal statistical information accrued to date. This aspect is discussed further in
section 12.

3.3.5 Test of Logistic Regression Slope

Suppose we sample paired observations (Y;, W;) for i« = 1,..., M, with binary response variable
Y; ~ B(1, ;) and where we assume a regression model based on covariates W; as log(v;/[1 — v]) =
a + W;, with § = e®. We wish to test a null hypothesis about the odds ratio § comparing two
populations which differ by one unit in their value of W, Hy : # = 1, and in a fixed sample test we
use as test statistic the Wald test of the slope parameter in a logistic regression, which statistic is
asymptotically normally distributed.

Such a trial corresponds to our fundamental model with a sampling unit corresponding to a
single observation, hence, N = M. The specification of the individual observations can be based on
weighted versions of the efficient scores from the logistic regression model. The average moments
from this model will be

Zz]\i1 ill — il
: oelf) and o Sl il =i Sy L — W = {0 il — ] Wi

Under this parameterization, the link function g¢(-) is the log function g(f) = log(f), and the
constant ¥ = 1.

The null and alternative hypotheses are typically specified directly, with 6y = 1 being the usual
choice for the null hypothesis.

At the jth analysis (and assuming the mean of the covariates is W and the weighted variance
of the covariates is constant for all j), the statistic Yj = B is the estimate of the slope from logistic
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regression in an analysis of the first NV; observations. For our purposes, we can usually assume
sufficient sample sizes such that a reasonable approximate test is obtained by using as Z; the Z
statistic for the test of the slope. The statistic P; is the one-sided P value from such a test used
to detect the alternative Hy : 6 > 0. If only a two-sided P value is provided by statistical software
(as is generally the case), then P; is half the two-sided P value when Z; > 0, and P; is 1 minus
half the two-sided P value when Z; < 0. As discussed above, it might be more robust to use the t
distribution rather than the standard normal distribution when the variance is unknown, hence it
is probably easiest to use the P-scale when using this statistical model.

It should be noted that although the above derivation assumes that the mean W and weighted
variance or the covariates is constant at each analysis, the statistical behavior of the group sequential
test is not substantially affected by slight deviations from those values across the different interim
analyses. Hence at the design stage, it is sufficient to assume constant values, and then when
actually monitoring the study to use the observed values at each analysis. This is equivalent to
just ignoring any variation in W and the weighted variance of the covariance across analysis times
and using the value of P; as defined above at each analysis.

Of course, major deviations in the distribution of covariates across analysis times will affect
the statistical behavior of the group sequential test when boundaries are determined solely on the
basis of the number of sampling units accrued to date. This problem is alleviated for the most part
when stopping boundaries are determined on the basis of the proportion of the planned maximal
statistical information accrued to date. This aspect is discussed further in section 12.

3.4 Poisson Response

In some clinical trials, the outcome counts the number of events occurring over some period of time,
some prescribed space, or a combination of the two. In such a setting, a common probability model
is to assume those counts are distributed according to the Poisson distribution, with a summary
measure based on the event rate. Comparisons across groups can be based on differences in the
event rates or based on ratios of the event rates. Only the models based on the multiplicative
measures (rate ratios) are implemented in S+SeqTrial.

In this application, we assume that sample sizes are sufficiently large to allow inference based
on the normal approximation to the Poisson distribution.

3.4.1 One Sample Test of a Poisson Event Rate (Additive Model)

Suppose we have a random sample of independent Poisson random variables with Y; ~ P(6t;)
fori = 1,...,M. We wish to test a null hypothesis about the population mean event rate 6,
Hy : 0 = 0y, and in a fixed sample test we perform a one sample Z test using test statistic

where 0y, = Ef\il Y/ Ef\il t;.

Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding
to the observation of a single unit of time. Hence, N = Ef\i 1 ti counts the subject time accrued
to the study. The average moments of the observations are thus u = @ and ¢? = . Under this
parameterization, the link function g(-) is merely the identity function g(6) = 6, and the constant
1p = 1. In such a study, the actual number of subjects to be accrued would be computed as the
value of N divided by the average time of observation ¢, that is M = N/t.

At the jth analysis, the statistic Yj is the estimated mean event rate éj computed based on the
observations during the first N; of study time. In a typical situation, the variance ¢ is not known,
and one would typically use either the variance under the null hypothesis or, more usually, the
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maximum likelihood estimate éj as an estimate. The test statistic Z; is just the test statistic for a
one sample test of a Poisson rate as given above, and the statistic P; is the one-sided P value from
such a test used to detect the alternative Hy : 6 > 6y. If only a two-sided P value is provided by
statistical software (as is quite often the case), then P; is half the two-sided P value when Z; > 0,
and P; is 1 minus half the two-sided P value when Z; < 0.

S+SeqTrial does not implement this probability model directly.

3.4.2 Two Sample Test of Difference in Poisson Event Rates (Additive Model)

Suppose we sample independently from two populations: a treatment group with Yi; ~ P(y1t15)
for i = 1,..., M7 and a comparison group with Y5; ~ P(vate;) for i = 1,..., Ms. For notational
convenience, we define r = Ef\i Yt/ Ef\i % t2;. We wish to test a null hypothesis about the difference
in population event rates 6 = 1 — 2, Hp : 8 = 6y, and in a fixed sample test we perform a two
sample Z test using test statistic

[Y1a1, — Yonr,] — Oo

2 1 1
-M M + =
\/’Y [Zi—ll tie Y obtu

where Yenr, = Y2 Yai/ ot tei for £ = 1,2 and Aap = [S02 Yio+ 3008 Yoo/ [0 o+ 203 fail.

Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding
to the observation of a single unit of time on the comparison arm and r units of time on the
treatment arm. Hence, N = Ef\g to; counts the subject time accrued to the study. The average
moments of the observations are thus 4 = 6 and 02 = v1/r + 72. Under this parameterization,
the link function g(-) is merely the identity function g(f) = 6, and the constant ) = 1. In such
a study, the total observation time for both arms is [r 4+ 1]N, and the actual number of subjects
to be accrued would be computed as the total observation time divided by the average time of
observation f = 77_, Ei]\i‘i [tei/My], that is M = [r + 1] N/t.

At the jth analysis (and assuming the ratio between the observation time from the treatment
group and from the comparison group is r:1 for all j), the statistic Yj is the difference in the

T(Y) =

estimated mean event rates 6; = 41; — 92; computed based on the first IN; of study time on the
comparison arm and the first rNV; of study time on the treatment arm. In a typical situation, the
variance o2 is not known, and one would typically use the maximum likelihood estimates 41; and
Y2; in estimating &2. The statistic Zj is the Z test statistic comparing two Poisson rates, as given
above. The statistic P; is the one-sided P value from the Z test used to detect the alternative
Hy : 0 > 6. If only a two-sided P value is provided by statistical software (as is quite often the
case), then P; is half the two-sided P value when Z; > 0, and P; is 1 minus half the two-sided P
value when Z; < 0.

It should be noted that although the above derivation assumes that the ratio between the
observation time from the first population and the observation time from the second population is
r:1 at each analysis, the statistical behavior of the group sequential test is not substantially affected
by slight deviations from that ratio across the different interim analyses. Hence at the design stage,
it is sufficient to assume a constant value for r, and then when actually monitoring the study to
use the observed r at each analysis. This is equivalent to just ignoring any variation in r across
analysis times and using the value of P; as defined above at each analysis.

Of course, major deviations in the distribution of sample sizes from the two populations across
analysis times will affect the statistical behavior of the group sequential test when boundaries are
determined solely on the basis of the number of sampling units accrued to date. This problem is
alleviated for the most part when stopping boundaries are determined on the basis of the proportion
of the planned maximal statistical information accrued to date. This aspect is discussed further in
section 12.
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S+SeqTrial does not implement this probability model directly.

3.4.3 One Sample Test of Poisson Event Rates (Multiplicative Model)

Suppose we have a random sample of independent Poisson random variables with Y; ~ P(6t;)
fori = 1,...,M. We wish to test a null hypothesis about the population mean event rate 6,
Hy : 0 = 60y. In a fixed sample test we might use the score test for the intercept in a Poisson
regression model having no covariates, in which case the test statistic is the same as described in
section 3.4.1.

An alternative test statistic in the fixed sample case can be based on the Wald test of the
intercept from a Poisson regression model having no covariates. This corresponds to a test based
on a logarithmic transformation of the maximum likelihood estimate of the event rate, with a
standard error derived using the delta method. Hence, in a fixed sample setting we might use test
statistic

where 0y = M v/ M 4.

Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding
to the observation of a single unit of time. Hence, N = Zf\il t; counts the subject time accrued to
the study. The average moments of the observations are thus y = log(#) and ¢ = 1/6. Under this
parameterization, the link function ¢(-) is the log function g(#) = log(f), and the constant ) = 1.
In such a study, the actual number of subjects to be accrued would be computed as the value of N
divided by the average time of observation ¢, that is M = N/t.

At the jth analysis, the statistic Yj is the estimate of the intercept in a Poisson regression
model having no covariates based on the first N; observation time, and éj = ¢%Xi. In a typical
situation, the variance 1/6 is not known, and one would typically use either the variance under
the null hypothesis or, more usually, the maximum likelihood estimate 1/ éj as an estimate. The
test statistic Z; is just the test statistic for the intercept in the Poisson regression model described
above, and the statistic P; is the one-sided p value from such a test used to detect the alternative
Hy : 0 > 6. If only a two-sided P value is provided by statistical software (as is quite often the
case), then P; is half the two-sided P value when Z; > 0, and P; is 1 minus half the two-sided P
value when Z; < 0.

3.4.4 Two Sample Test of Poisson Event Rate Ratio (Multiplicative Model)

Suppose we sample independently from two populations: a treatment group with Yi; ~ P(y1t15)
for i = 1,..., M7 and a comparison group with Y5; ~ P(vate;) for i = 1,..., Ms. For notational
convenience, we define r = Zf\fl t1i/ Zf\g to;. We wish to test a null hypothesis about the ratio
in population event rates § = ~1/v2, Ho : 6 = 6y. In a fixed sample test we might use the score
test for the slope in a Poisson regression model having a binary covariate, in which case the test
statistic is the same as described in section 3.4.2.

An alternative test could be based on the asymptotic distribution of the log event rate ratio
log(é) = log(41 /A2, where 41 = Y1y, and A9 = Yap,. The statistic is thus the Wald test of the
slope parameter in a Poisson regression with binary predictor.

Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding to
the observation of a single unit of time on the comparison arm and r units of time on the treatment
arm. Hence, N = Zf\g to; counts the subject time accrued to the study. The average moments
of the observations are thus yu = log(f) and 0? = 1/[ry1] + 1/72. Under this parameterization,
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the link function g¢(-) is the log function ¢g(6) = log(#), and the constant ¢y = 1. In such a
study, the total observation time for both arms is [r + 1]V, and the actual number of subjects
to be accrued would be computed as the total observation time divided by the average time of
observation f = 77_, Ei]\i‘i [tei/ M), that is M = [r + 1] N/t.

At the jth analysis (and assuming the ratio between the number of measurements from the
first population and the number of measurements from the second population is r:1 for all j), the
statistic Yj = log(éj) is the log event rate ratio estimate based on the first INV; observations. In a
typical situation, the variance must be estimated because v; and v, are not known, and one would
typically use the maximum likelihood estimates 41 and 4o, respectively. The statistic Z; is the
Z test statistic from a Poisson regression analysis. The statistic P; is the one-sided P value from
the 7Z test used to detect the alternative Hy : 8 > 6y. If only a two-sided P value is provided by
statistical software (as is quite often the case), then P; is half the two-sided P value when Z; > 0,
and P; is 1 minus half the two-sided P value when Z; < 0.

It should be noted that although the above derivation assumes that the ratio between the
observation time from the first population and observation time from the second population is r:1
at each analysis, the statistical behavior of the group sequential test is not substantially affected by
slight deviations from that ratio across the different interim analyses. Hence at the design stage,
it is sufficient to assume a constant value for r, and then when actually monitoring the study to
use the observed r at each analysis. This is equivalent to just ignoring any variation in r across
analysis times and using the value of P; as defined above at each analysis.

Of course, major deviations in the distribution of observation times from the two populations
across analysis times will affect the statistical behavior of the group sequential test when boundaries
are determined solely on the basis of the number of sampling units accrued to date. This problem is
alleviated for the most part when stopping boundaries are determined on the basis of the proportion
of the planned maximal statistical information accrued to date. This aspect is discussed further in
section 12.

3.4.5 Test of Poisson Regression Slope

Suppose we sample paired observations (Y;, W;) for i« = 1,..., M, with count response variable
Y; ~ P(v;) and where we assume a regression model based on covariates W; as log(v;) = o + W,
with # = e®. We wish to test a null hypothesis about the event rate ratio  comparing two
populations which differ by one unit in their value of W, Hy : # = 1, and in a fixed sample test we
use as test statistic the Wald test of the slope parameter in a Poisson regression, which statistic is
asymptotically normally distributed.

Such a trial corresponds to our fundamental model with a sampling unit corresponding to a
single observation, hence, N = M. The specification of the individual observations can be based on
weighted versions of the efficient scores from the Poisson regression model. The average moments
from this model will be

2 ZM1 Vi
=@ =1log(#) and o°= L= .
h= = los) Sy i W = [ Wil
Under this parameterization, the link function g(-) is the log function g(f) = log(f), and the
constant ¥ = 1.

The null and alternative hypotheses are typically specified directly, with 6y = 1 being the usual
choice for the null hypothesis.

At the jth analysis (and assuming the mean of the covariates is W and the weighted variance of
the covariates is constant for all j), the statistic Yj = B is the estimate of the slope from Poisson
regression in an analysis of the first NV; observations. For our purposes, we can usually assume
sufficient sample sizes such that a reasonable approximate test is obtained by using as Z; the Z
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statistic for the test of the slope. The statistic P; is the one-sided P value from such a test used
to detect the alternative Hy : 6 > 0. If only a two-sided P value is provided by statistical software
(as is generally the case), then P; is half the two-sided P value when Z; > 0, and P; is 1 minus
half the two-sided P value when Z; < 0. As discussed above, it might be more robust to use the t
distribution rather than the standard normal distribution when the variance is unknown, hence it
is probably easiest to use the P-scale when using this statistical model.

It should be noted that although the above derivation assumes that the mean W and weighted
variance or the covariates is constant at each analysis, the statistical behavior of the group sequential
test is not substantially affected by slight deviations from those values across the different interim
analyses. Hence at the design stage, it is sufficient to assume constant values, and then when
actually monitoring the study to use the observed values at each analysis. This is equivalent to
just ignoring any variation in W and the weighted variance of the covariance across analysis times
and using the value of P; as defined above at each analysis.

Of course, major deviations in the distribution of covariates across analysis times will affect
the statistical behavior of the group sequential test when boundaries are determined solely on the
basis of the number of sampling units accrued to date. This problem is alleviated for the most part
when stopping boundaries are determined on the basis of the proportion of the planned maximal
statistical information accrued to date. This aspect is discussed further in section 12.

3.5 Censored Time to Event

In some clinical trials, the outcome measures the time to some event. A complicating factor of
many such studies is that some of the observations are right censored. That is, some of the events
have not yet been observed, and instead we only know that they have not occurred prior to some
censoring time that is noninformative with respect to the true event time.

There are many probability models that have been extended to the case of such right censored
data. One such model is the semiparametric proportional hazards model. In the setting of a two
arm clinical trial, that model leads to the logrank test. In this application, we assume that sample
sizes are sufficiently large to allow inference based on the normal approximation to the logrank test
statistic, which is described in section 3.5.1

In censored time to event analyses, the statistical information is proportional to the number
of observed (uncensored) events. Hence, after obtaining a sample size estimate for the number of
events, some model must be used to devise a sampling scheme that would result in that number of
events in a prescribed period of follow-up. This is discussed in section 3.5.2

3.5.1 Logrank Test Comparing Times to Event in Two Sample

Consider a clinical trial in which M subjects are randomly allocated to treatment or control in the
ratio of r:1. Further suppose that the hazard function for the distribution of failure times in the
control group is given by Ao(¢) and in the treatment group is given by A1(t) = Ag(t)0. We wish to
test the null hypothesis that the hazard ratio comparing the treatment group to the control group
is 1, Hp : @ = 1. In such a trial, we can use our fundamental model with S; the partial likelihood
based score function for 3 = log(f) in a proportional hazards regression model at the jth analysis,
with moments p = log(0)r/(r + 1)2, g = 0, o9 = r/(r + 1), and N; counts the number of failures
observed by the jth analysis.

In this application, in our parameterization of y = g(0) = log(0)r/(r + 1)?, the hazard ratio
6 is the natural parameter 0, ¢» = r/(r + 1)2, and the transformation g(-) is the logarithmic
transformation g(#) = log(6). Alternatively, a user may wish to make inference in the scale of the
log hazard ratio 3, in which case 3 would be treated as the natural parameter 6, ) = r/(r + 1)2,
and the transformation g(-) is the identity transformation g(6) = 0.
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3.5.2 Determining the Sampling Scheme to Obtain a Desired Number of Events

In clinical trial that has a primary endpoint measuring time to event, the statistical information is
proportional to the number of observed (uncensored) events. The actual number of subjects to be
accrued will have to be computed based on some assumption about the accrual rate, the time of
accrual, the time of additional follow-up after accrual has stopped, the baseline hazard Ay(t), and
some hypothesized value of the hazard ratio . One such method of determining sample size can
be based on the assumption of accrual of subjects uniformly over the interval (0,a), the assumption
that censoring of observations occurs only by continued survival at time of analyses, that the final
analysis takes place at time 7 > a, and that the survival times in the control population follows an
exponential distribution with hazard rate Ag.

Under the above model, the probability of observing a failure by time ¢ in the control sample is

t 1 expi-Aot} ;
m /\oa+ oa ift<a

1— exp{—Xo(t—a)} + expi:\;j\()t} if ¢ >a

)\Oa

For the treatment sample, a similar formula holds in which Ag is replaced by A1 = Agf. Thus if the
subjects are randomized r treatment : 1 control, then in order to expect to observe N failures by
time 7 > a, we must randomize M subjects overall according to

M — N [(%) <1 _ eXp{_;\\(;)a(lt—a)} + expi;j@})_i_

T exp{—A;1(t—a exp{—A1t
(m) (1_ (-} | p§1a1}>

3.6 Statistics Based on Efficient Scores

-1

The above settings can all be shown to be special cases of tests based on regression parameters
using statistics derived from efficient likelihood theory. From asymptotic likelihood theory, we have
that the efficient score function U () evaluated at 6 = 6y has asymptotic distribution

U (60)~N ([0 — 00]1(6), 1(0)),

where I(#) is Fisher’s information at the true value of 6.

Thus we can apply our fundamental model to this setting by considering the normal probability
model for a one arm study. Furthermore, if we use u = [0 — 6], 0> = 1 and N = I(6), the “sample
size” N is just measuring the accrual of statistical information for observations X; = log(f(Y;, 6p)).

This formulation can be used to implement what is often referred to as “information based”
monitoring in the group sequential literature. The test statistic Z; would just be the score statistic
calculated at the jth analysis, with boundaries chosen according to the magnitude of the Fisher’s
information I;(6) at the jth analysis relative to the planned maximal information 1;(6).
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4 Group Sequential Stopping Rules

Our goal is to decide between hypotheses Hg : p = po, Hy : p > py, and H_ @ p < p_ by
repeatedly analyzing the data (up to J times) as it accrues. That is, the sample sizes Ny, ..., Nj =
N correspond to the sample sizes at which an analysis of the data is performed. The group
sequential stopping rule is specified by defining the conditions under which a study is stopped and
the conditions under which a study is continued to the next analysis. In this section we define first
a general structure for stopping rules based on the partial sum statistic. We then illustrate the way
that this general framework can be used to construct some of the more common group sequential
stopping rules. Finally, we discuss the transformation of stopping rules from the partial sum scale
to other scales, and vice versa.

4.1 Stopping Rules on the Partial Sum Scale

A stopping rule for the partial sum statistic shall be defined by specifying continuation sets, Cs; C
(=00, ), for j = 1,...,J, where we use the subscript ‘S’ to explicitly denote a continuation set
defined for the S-scale. The complements of the continuation sets will be termed the stopping sets.

We will use these continuation sets to define a stopping rule in the following manner. Starting
with j = 1, we compute S; and compare that value to Cg;. If S; & Cgj, we stop the study (later
we shall discuss the decisions that we shall make at the time of stopping the study). Otherwise, we
continue the study by incrementing j and again computing the value of the statistic and comparing
that value to the continuation set. We shall let M be the analysis at which the study is terminated,
and we shall define S (without a subscript) as the value of the partial sum statistic when the study
terminates. That is,

M = min{j:S; ¢Cs;}
S = Sy (4.1)

In order to guarantee that there are at most J analyses performed, we require that the Jth
continuation set be empty. In order to guarantee a unique specification for each stopping rule based
on a particular statistic, we shall also adopt the convention that all continuation sets before the
Jth are neither empty nor exhaustive. Thus we have constraints

Csj # 0 j=1,...,J-1
Cs; # (—00,00) j=1,....,J-1
Csy = 0 (4.2)

The basic goal of a stopping rule is to stop a study as soon as we can be sufficiently confident of
the decision we would have made if we had continued the study long enough to observe the entire
sample. In choosing a stopping rule that is appropriate for the three hypotheses Hy, Hp, and H_,
we need only consider the possibilities that we might want to stop when the data tend to be so
high as to suggest that we would want to decide for H, that we might want to stop when the data
tend to be so low as to suggest that we would want to decide for H_, or that we might want to
stop when the data tend to be so close to g as to suggest that we would want to decide for Hy.
We note that in some situations, we may not want to decide early in favor of certain of these three
hypotheses. Our purpose now is to provide enough flexibility that we can construct stopping rules
that would allow such early decisions if desired.

At each of the J analyses, the partial sum statistic S; is stochastically ordered in the sense
that the statistic tends to be larger when the value of u is larger. It is intuitively reasonable that
our most general stopping rule would allow us to stop the study when the statistic is extremely
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large, extremely small, or tending closely to the middle. Thus our stopping rule needs to consider
continuation sets that allow us to continue the study when we can not yet distinguish between H
and Hy or when we can not yet distinguish between Hy and H_. Thus, we find it adequate to
consider continuation sets that can be specified as the union of two disjoint intervals. Thus, the
continuation sets for the partial sum statistic can be defined for j =1,...,J as

Csj = (agj, bs;] Ulcsj, dsj) (4.3)

We shall adopt the convention that the boundaries of the continuation sets satisfy

Qsj < bsj < Csj < dsj. (4.4)

Due to the constraints imposed by eqn (4.2), we must have that

as; # bs; OR csj # dg; j=1...,J-1
asy = bsy
csy = dsj (4.5)

The continuation sets specified in eqn (4.3) were specified as unions of half open intervals. These
continuation sets were motivated by the desire to continue whenever we had not yet distinguished
between two adjacent hypotheses (i.e, either H, and Hy or Hy and H_). This plan allows the
greatest flexibility when considering decisions involving three hypotheses (e.g., a two-sided hypoth-
esis test). However, when testing a two-sided hypothesis in which we do not desire to stop early if
the data are consistent with Hy, we may want a continuation set that can be represented as a single
interval. In such a case, however, we need only choose the continuation intervals to be contiguous,
i.e., choose b; = ¢;. For notational convenience, we adopted the convention that

asgj < bsj =cgj < dsj = bsj S Csj. (4-6)

That is, in this case we shall assume that the two intervals comprising the continuation set are half
open intervals, rather than open intervals as denoted in eqn (4.3).

4.2 Classes of Commonly Used Group Sequential Stopping Rules

The usual way in which stopping rules are used to implement a group sequential stopping test is
to divide the stopping sets (the complements of the continuation sets) into subsets corresponding
to the decisions to be made regarding the null and alternative hypotheses. This concept was used
as the motivation for our choice of the general structure of a continuation set as the union of
two disjoint intervals as described in eqn (4.3). Thus, while the distribution of our statistics is
determined solely by the continuation sets at each analysis (see section 5), it seems intuitively clear
that greater statistical efficiency will be obtained if the boundaries of the continuation sets also
demarcate the boundaries between decisions for H, Hy, and H_, as appropriate for the application.

The exact correspondence between our stopping boundaries and the decision we make regarding
the hypotheses will depend somewhat upon the goals of the clinical trial. That is, the decision that
will correspond to early stopping will depend upon whether we are trying to distinguish between
all three hypotheses Hy, Hy, and H_ (e.g., a two sided test), or whether we want to combine two
of the hypotheses (e.g., a one sided test). For instance, there have been several basic structures
proposed in the statistical literature for group sequential hypothesis tests. The following describe
such stopping rules in our notation. In this description, all boundaries left unspecified can be
chosen arbitrarily (subject to the constraints imposed by eqns (4.4) and (4.5)) in order to meet the
desired operating characteristics for the test.



Technical Overview, Section 4—6 Sep 07, Page 50

A. A single upper early stopping boundary.

ds; = arbitrary forj=1,...,J
csj = bsjg=1,....J

asj = —-oo,j=1,...,J—1
asy = dgyg

Situations for which such a group sequential design might be appropriate include:

1. Testing Hy against H in a situation where the study should be stopped early only in
the case of evidence against the null hypothesis. That is, we do not desire to distinguish
between H_ and Hjy, and it is only deemed important to terminate the study early in
situations where the data look to be inconsistent with H_ and Hy. Our decision rule
might be to decide Hy if S > dgpr, and to decide Hyp if S < agpsr. We note that the
latter situation, which could also be written S < dgys, can only occur if M = J.

2. Testing the one-sided hypotheses Hy against H_ when early stopping is only desired
in the case of data which is so consistent with Hy (or Hy) as to preclude our further
consideration of H_. In such a setting, our decision rule might be to decide Hj if
S > dgsy, and to decide H_ if S < agps. We note that the latter situation can only
occur if M = J.

B. A single lower early stopping boundary.

ag; = arbitrary for j =1,...,J
bsj = csj3=1,...,J

dsj = oo,j=1,...,J—1

dsj = agy

Situations for which such a group sequential design might be appropriate include:

1. Testing Hy against H_ in a situation where the study should be stopped early only in
the case of evidence against the null hypothesis. That is, we do not desire to distinguish
between H, and Hy, and it is only deemed important to terminate the study early in
situations where the data look to be inconsistent with H; and Hy. Our decision rule
might be to decide H_ if S < agps, and to decide Hy if S > dgps. We note that the
latter situation can only occur if M = J.

2. Testing the one-sided hypotheses Hy against H, when early stopping is only desired
in the case of data which is so consistent with Hy (or H_) as to preclude our further
consideration of Hy. In such a setting, our decision rule might be to decide Hj if
S < agpy, and to decide Hy if S > dgps. We note that the latter situation can only
occur if M = J.

C. Lower and upper early stopping boundaries which meet at the final analysis:

ds; = arbitrary for j =1,...,J

csj = bsj,g=1,...,J

agj = arbitrary for j=1,...,J—1
asy = dgsy

Situations for which such a group sequential design might be appropriate include:
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1. Testing the one-sided hypotheses Hy against H; when early stopping might be desired
in the case of data which is so consistent with Hy (or H_) as to preclude our further
consideration of H,, or when the data suggests that Hy (and H_) should be rejected.
In such a setting, our decision rule might be to decide Hy if S < agys, and to decide H4
if S >dgn.

2. Testing the one-sided hypotheses Hy against H_ when early stopping might be desired
in the case of data which is so consistent with Hy (or H,) as to preclude our further
consideration of H_, or when the data suggests that Hy (and H. ) should be rejected.
In such a setting, our decision rule might be to decide Hy if S > dgjs, and to decide H_
if S <agpy.

D. Lower and upper early stopping boundaries which do not meet at the final analysis:

ds; = arbitrary for j =1,...,J
csg = dgyg

csj = bgj,g=1,...,J—-1

bsy = agy

as; = arbitrary for j =1,...,J

Situations for which such a group sequential design might be appropriate include:

1. Testing two-sided hypotheses H_ against Hy against H; when early stopping might be
desired only in the case of evidence against the null hypothesis. In such a setting, our
decision rule might be to decide Hy if S > dgpy, to decide H_ if S < agys, and to decide
Hy if bgpyr < S < aSM. We note that the latter decision can be made only if M = J.

E. Four early stopping boundaries:

ds; = arbitrary for j =1,...,J

csj = arbitraryforj=1,...,J—1
csg = dgyg

bsj = arbitraryforj=1,...,J—-1
bsy = agy

as; = arbitrary for j =1,...,J

Situations for which such a group sequential design might be appropriate include:

1. Testing two-sided hypotheses H_ against Hp against H, when early stopping might
be desired in the case of evidence against the null hypothesis or when the data are so
consistent with the null hypothesis as to preclude further consideration of H; or H_.
In such a setting, our decision rule might be to decide Hy if S > dgps, to decide H_ if
S < aspy, and to decide Hy if bgps < S < cspr. We note that it frequently happens that
bsj = cg; at some of the earliest analyses, in which case stopping with a decision for the
null hypothesis is impossible at those analysis times.

It should be clear that the above list is not exhaustive: There are many other patterns of group
sequential tests that are possible within this framework. It is rare, however, that any other patterns
of designs will be used in practice.

It should also be clear that the applications described for each of the types of designs is not
exhaustive. In particular, we shall discuss the application of these designs to equivalence testing
later in this document.
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4.3 Transformations of Stopping Rules to Other Scales

In section 7?7, we described stopping rules in terms of the partial sum scale. However, because of the
one to one relationship between the statistics defined in eqn (1.12), we can also specify a particular
stopping rule based on any of the statistics. This is because the specification of the continuation sets
for any one of the statistics given in eqn (1.12) automatically induces a corresponding continuation
set for the others. That is, given a stopping rule specified by particular choices of agj, bsj, cgj,
and dg; for j = 1,...,J, the stopping rules for other choices of test statistic are easily found by
applying the transformations in eqn (1.14) to each of the boundaries. For example, the stopping
rule for the sample mean statistic can be found as

ax; = asj/Nj bx; =bsj/N; cx; =csj/N;j dg; =ds;/N;

Note that if the boundaries on the partial sum scale satisfy the constraints given by eqns (4.4)
and (4.5), then the boundaries on the sample mean scale satisfy similar constraints.

In order to explicitly denote the stopping rule for a specific test statistic, we shall subscript
the boundary with the letter denoting the scale. Hence, for instance, ag;, axjs Azj, APj, ABj, ACy,
aHjs QE,js OE,j, OF.j, and ag,; shall denote the lower boundary for the partial sum statistic, the
sample mean statistic, the normalized Z statistic, the fixed sample P value, the Bayesian posterior
probability, the conditional futility statistic, the predictive futility statistic, the lower type I error
spending statistic, the lower type II error spending statistic, the upper type II error spending
statistic, and the upper type I error spending statistic, respectively. It should be noted that in the
case of the stopping rules on the B-, C-, H-, and FE-scales, the transformations depend upon some
particular choice of hypothesized mean, testing threshold, or both. We shall thus have to make
clear the choices of those parameters when using stopping boundaries on those scales.

In later sections, we shall define families of group sequential stopping rules based on the various
scales. In fact, in some families, different transformations will be used for the a, b, ¢, and d
boundaries in that different choices of hypothesized means and/or testing thresholds will be used.
In such cases, it is not always immediately clear by inspection that the constraints in eqn (4.2)
are satisfied. Nonetheless, we shall require that a group sequential stopping rule defined on other
scales satisfy eqns (4.4) and (4.5) when the stopping rule is transformed to the partial sum scale.
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5 Sampling Density

When choosing a group sequential stopping rule for use in frequentist hypothesis testing, we gener-
ally desire to find stopping boundaries to guarantee a level « test for some specified value of a. As
discussed in the next section, there are a number of other operating characteristics that one might
typically examine in the process of selecting an appropriate stopping rule for a clinical trial. In
order to compute many of these operating characteristics, we need to know the sampling density
for the test statistic.

5.1 Sampling Density for Partial Sum Statistic

In the previous section, we defined stopping rules for the partial sum statistic in detail, and then
we discussed the ways in which stopping rules could be derived for other test statistics by using the
transformations given in section 1.5. When deriving the sampling density for the test statistics, it
is also easiest to derive the density for the partial sum statistic or the sample mean statistic, and
to use one of those forms when making probability statements about other test statistics.
Hence, we consider a group sequential stopping rule having continuation sets for the partial
sum statistic given by
CSj = (aSjv bSjl U [CSjv dsSj). (5.1)

For a particular value of u, we desire to find the sampling density p(m, s; u) for the test statistic
(M =m,S=s),m=1,...,J, s € (—00,), as defined by eqn (4.1). This can be shown to be
(Armitage, McPherson, and Rowe, 1969)

(5.2)

f(mvs;:u) s ¢Cvaand
p(m, s; ) =
0 else

where the function f(j, s; p) is recursively defined as

) - 1 S—nip
f(lvsmu) - \/EO'QS( \/mo_ >

. - 1 §—U— N . ) .
f(]vsmu) - /CS(]._D WU¢< \/n—jo_ >f(.7 1,U7 :u) du7 J = 27 cees M (53)

where ¢(z) = e=*°/2/\/27 is the density for the standard normal distribution and n; = Ny and
n; = N; — N;j_1 for j = 2,...,J denote the size of the groups accrued between successive analyses.

The function f(j, s; 1) is the subdensity for S;. For notational convenience, it is useful to define
the cumulative function

Fli.siw = [ fGousdu (5.4)
It should be noted that -
j—
F(j,00;p) =1 =Y Pr(M = k; ), (5.5)
k=1

which is strictly less than 1 for j > 1. We define the inverse function F~!(j, y; u) by

F7 G,y ) = sy & F(j, sy 1) = . (5.6)

The function f(j, s; 1) can not be integrated in closed form, thus numerical integration routines
are necessary. The use of such routines for testing/estimating an unknown mean g is made easier

by the relation
2

Pl = 1 s0)exp (2~ 25 ) (5.7
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The most common uses of the sequential density p(m, s; u) involve integrations of the form
fry g(m, s)p(m, s; ) ds, where g(m, s) is some known function such as g(m, s) = 1 (for the compu-
tation of probabilities), g(m, s) = s (for the computation of expectations), or g(m, s) = s? (for the
computation of variances). Some computational efficiency is obtained by the following derivation.
Suppose that p(m,s;u) > 0 for all s € (x,y) (that is, interval (z,y) does not overlap with the
continuation set at the mth analysis) and that g(m,s) = s for t = 0,1, 2. Then by interchanging
the order of integration, we can write

y y 1 —u—n,,
[ stmswimswas = [ ¢(s u TZM)fUn—Lqudu%
- v JCsinyy VMmO MmO

y 1 — =y,
= / flm—1,u; ) [/ st (b(s v-n M) ds] du
Cs(m) . N0 N0

= / f(m - 1,U; ,u)ht(u,x,y,m;,u) du (58)
Cs(m-1)

where the functions hg(), h1(), and hy() are given by

ho(u, 2y, mi ) = @<2111@ﬂ>_¢<£:£1@ﬂ>
N O N O
hl(u,w,y,m;,u) = (u—l—nmu)ho(u,w,y,m7u) -
Yy—u—nmp T —U— Nyl
N (772 > ) — ¢ (772 > )] (5.9)
y—u—nmp) LU= Nmp
/o O _(y—l—u—l—nmu)qb< — ) (a?—l—u—l—nm)QS( — >]

The advantage afforded by the above formulas is that good approximations to the standard normal
cumulative distribution function ®(z) exist in closed form. Thus, the integral [ g(m, s)p(m, s; p)ds
is computed for approximately the same cost as computing p(m, s; y).

5.2 Sampling Density for Sample Mean Statistic

As noted above, computation of probabilities is most easily performed on the partial sum scale.
We include the sampling density for the sample mean scale here for informational purposes only.

We define the density for a group sequential stopping rule having continuation sets for the sample
mean statistic given by Cx,; = (ax;, bx;) U (cx;, dx;), which can be derived from the stopping rule
for the partial sum statistic given in eqn (5.1) by applying the transformation eqn (1.14) to each
of the continuation set boundaries. The sampling distribution for (M, X), denoted by ps(m, x; u),
can be written in the recursive form of Armitage, McPherson, and Rowe (1969):

~(m, z; z ¢ Cx,,,and
px(m, @ 1) = Frlm.zip) = & Cx (5.10)
0 else

where the function f+(j, s; ) is recursively defined as

_ B ny rny — nio
fy(l,l}/ﬁ) - \/EO'QS( \/mo_ >

. N; oN; —uN;_1 —n;
fx(,z;0) = / = ¢< . =L T
Coiio1y VT4O Ny

forj=2,...,J.

) fx(J — L, us p) du, (5.11)
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5.3 Sampling Density Under the Standardizing Transformation

As noted in section 1.6, in most study design situations, we are interested in determining the
sample size which would provide adequate power to detect an alternative hypothesis of interest.
We thus need to be able to compute the operating characteristics of a group sequential test in
some standardized form, and then solve for the sample size that would provide those operating
characteristics for a specific alternative. In this section, we present the sampling density for the
partial sum statistic under the standardizing transformation given in eqn (1.15).

Under the standardizing transformation, the group sequential stopping rule for the standardized
partial sum statistic S;f has continuation sets

Cs; = (ag;, b™Sj] U [cg;, d*S5),
where the continuation set boundaries are found by applying the transformation of eqn (1.31) to
the stopping boundaries Cg; = (asj, bSj) U (csj, dSj) to obtain

a*Sj = lasj — Njuol/lov/ Ny
b*Sj [bsj — Njpol/[o/ NJ]
c*Sj [csj — Njpol/[ov/ N
d*Sj = [dsj — Njpol/[o/ Ny (5.12)

The partial sum statistic in the untransformed problem is (M*, S*), where M* = M and
S* =[S — N,uol/[ov/Ny] as specified in eqn (1.31). For a particular value of § = /Ny[u = po)/o,
we desire to find the sampling density p*(m*, s*;0) for the test statistic (M* = m*, S* = s*),
m*=1,...,J, s € (—00,00). This can be shown to be (Armitage, McPherson, and Rowe, 1969)

fr(m*, s*49) s* Z Cepprr and

5.13
0 else ( )

where the function f*(j, s*;0) is recursively defined as

. 1 §* — 6
f(17876) - \/7T_1¢< \/77_1 >

. 1 s*—u—mo
f(4,s%9) = ,¢< —
Cgny VTIT V7

where ¢(z) = e=7°/2//27 is the density for the standard normal distribution and m = Ni/N; and
mj =1I; =14 = [N; — Nj—1]/Ny for j = 2,...,J denote the proportion of the maximal sample
size which is accrued between successive analyses. We again have the computationally useful form

P i) = 1G5t 0)enp (75— T (5.15)

Given the 1:1 transformation of the stopping boundaries for the original data and the stopping
boundaries for the standardized problem, it should be clear that testing or estimating J in the
standardized setting is equivalent to testing or estimating p with the original data. That is, a
hypothesis test of Hy : § = 0 is equivalent to testing Hy : u = pg. Furthermore, for specified
sample sizes Ni,..., N;j = N, the operating characteristics of the group sequential test for the
standardized problem for a given value of § = J, will be equivalent to the suitably transformed
operating characteristics for the corresponding group sequential test defined for the original data
(using the relationships given in eqns (1.32)) when

g
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Similarly, when we obtain an estimate ¢ of ¢ from the standardized problem, using (1.33) we can
easily obtain an estimate fi for 4 in the fundamental model and 6 for the natural parameter in an
application of the fundamental model (see section 3) according to

o= po+ =
0 :g—1<g>. (5.17)
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6 Operating Characteristics

In a fixed sample study in which all data are accrued prior to any analysis, reference to the operating
characteristics of the test is usually taken to mean the size (type I error) and power curve (one
minus the type II error). In the presence of a stopping rule, however, there are more features of
the study design that might need to be examined. For instance, the sample size accrued during
the study is now a random variable, and hence summary statistics for that distribution might be of
interest. In this section we describe some of the measures that might be used to evaluate whether
a particular stopping rule is appropriate in a given clinical trial situation.

6.1 Power Functions

In Neyman-Pearson hypothesis testing, we generally choose critical values for rejection of the null
hypothesis such that the probability of falsely rejecting the null (referred to as the type I statistical
error) is acceptably low. This agreed upon value for the type I error is called the level of significance,
or just the level or size of the test.

It is often more convenient, however, to consider the probability of rejecting the null hypothesis
under various hypothesized treatment effects. Thus we consider the power function of the test
B(w), the probability of rejecting the null hypothesis as a function of the true value of the unknown
mean. The type I error is then the value of the power function when the null hypothesis is true
(e.g., a = B(uo), and the type II error (the probability of falsely failing to reject the null) for some
given value of the unknown mean p is 1 — G(p).

In the group sequential tests described in the previous section (as well as in the usual fixed
sample hypothesis tests), the stopping sets consistent with rejection of the null hypothesis vary in
structure according to whether we are testing one-sided or two-sided hypotheses. In defining the
operating characteristics of a group sequential test, we shall therefore find it more useful to define
three functions

Bi(p) = Pr(S=dsm; p)
Bo(p) = Pr(bsy < S <csm; )
B-(n) = Pr(S<asu; p) (6.1)

We note that these functions must satisfy 81 (u) + Bo(p) + 8- (p) = 1 for all p, thus any two of these
functions is actually sufficient to specify the operating characteristics of the test. We shall typically
restrict attention to the ‘upper power function’ G4 (u) and the ‘lower power function’ S_ ().

The functions specified in eqn (6.1) are easily related to the classical way of characterizing a
hypothesis test. For instance, for the group sequential tests defined in the previous section, the
classic power function would be

Bi(p) + B—(u) for two-sided tests of type D or E,
B(p) = Ba(p) for one-sided tests of type Al, B2, or C1, and (6.2)
B () for one-sided tests of type A2, B1, or C2.

A level « test of the null hypothesis would have 3(up) = a.

We can also define the operating characteristics of a group sequential test in the standardized
setting for appropriate transformations of the hypotheses (eqn (1.33)), boundaries (eqn (1.31)), and
statistics (eqn (1.31)) by

(0) = Pr(S*=dgy; 0)

(0) = Pr(biy < S < chys 0)
(0) = Pr(S®<a%y: 9) (6.3)
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The classic power function would be

B (0) + 7 () for two-sided tests of type D or E,
B*(6) = § £1(9) for one-sided tests of type Al, B2, or C1, and (6.4)
B (9) for one-sided tests of type A2, B1, or C2.

A level « test of the null hypothesis would have 3*(0) = «a.

6.2 Stopping Probabilities

The power function described in the previous subsection applies equally well to both the fixed
sample (J = 1) and group sequential (J > 1) settings. In the group sequential setting, however,
it is often of interest to consider the probability of making a given decision at each of the analysis
times. Hence we define the stopping probabilities at the jth analysis time as

Byj(p) = Pr(S>dsu&M = j; p) = F(j,00; 1u) — F(4,dsj; 1)
Boj(p) = Pr(bsm < S < csm&M = j; p) = F(j,csjip) — F(4,bsj; p)
B-j(p) = Pr(S<asm&M =j; p) = F(j,as;; 1) (6.5)

where F'(j, s; 1) is defined by eqn (5.4). We note that these stopping probabilities satisfy

J
Bi(w) = Y Bi(n)
=1

J

Bo() = D Boj(u)
j=1

J

B(p) = Y Bi(n
j=1

It is also at times convenient to consider for 1 < k < j < J the probability of stopping at the
jth analysis conditional upon not having stopped at or prior to the kth analysis. We thus define
conditional stopping probabilities

Bijiw(n) = Bij(p)/Pr(M > k)
Bojik(w) = Boj(p)/Pr(M > k)
Bjie(n) = B—j(p)/Pr(M > k) (6.6)

6.3 Error Spending Functions

In some group sequential design families or implementations of monitoring strategies, it is of interest
to consider the rate at which a type I or type II error is allocated across analysis times. The
statistical errors associated with a particular set of hypotheses and stopping rule are type I errors
ay and oy, and type II errors 1 — 3y and 1 — 3,,. We thus can define the following four error spending
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functions for an analysis when the proportion of the maximum sample size accrued is II as

B = — 3 Boil)

i1, <II
B = =5 3 [oylue) +Bs()
I, <II
B = =g 3 () + Ayl
¢ G <
B = — 3 Bisuos) (6.7)
UG <I

It should be noted that the type I and II errors can be defined by

J
ar = B(mo-) = Bj(po-)
j=1
J
1= = Bolp-)+Br(n-) = [Boj(n-) + Bys(n-)]
=1
J]
= 1-B(u)=1-) B j(u)
j=1
J
1= By = Bolur) +B-(ug) =Y [Boj(py) + B-j(us)]
=1
J]
= 1=By(pr) =1=) Bejlpy)
=1
; J
au = Bilpor) = Brjluor) (6.8)
=1

Note also that the error spending functions defined above are related to, but not in all cases
exactly equivalent to, the error spending scales for the group sequential test statistics defined in
eqns (1.10) and (1.11). For u, = po— and S; = agj, Eqj = Eq(Il;). For pg = po4+ and S; = dgj,
Eq4 = E4(I1;). The error spending scale at the ‘b’ and ‘c’ boundaries, however, differ slightly from
the type II error spending functions. The difference arises because the error spending scale was
defined for every possible value of the S;’s, and thus considered the probability mass within the
continuation regions at the jth analysis. The error spending function only considers values at the
boundaries and does not include the probability mass at each analysis that occurs within continu-
ation sets. It should be noted that the S+SeqTrial functions seqDesign() and seqBoundary ()
return the error spending functions when display.scale="E", while the S+SeqTrial function
changeSeqgScale () returns the statistics on the error spending scale.

6.4 Sample Size Distribution

In group sequential testing, we are also often interested in characterizing the operating character-
istics of a test with respect to the distribution of sample sizes at the time of study termination.
Often this distribution is characterized by the expected number of subjects accrued prior to study
termination, the average sample number (ASN), although other summary measures of the sample
size distribution (median, 75th percentile, 90th percentile) might be more appropriate in specific
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situations. Two tests with the same level of significance and the same statistical power to detect
a particular alternative may have very different probability distributions for the sample size at the
time the study is terminated. In general, the sample size distribution is a function of the stopping
boundaries and the value of the true mean u. The distribution function Fy(n;u), the average
sample size function ASN (u), and the sample size quantile function @y (p; ) are defined by

Fx(nip) = Y Pr(M=jip)
j:NjSTL

J
ASN(p) = > NjPr(M = j;p)
j=1
Qn(p;p) = N; suchthat Pr(M <j;u) >pand Pr(M > j;p>1—p (6.9)

Computation of the probability functions is possible through the sampling density defined in sec-
tion 5.

6.5 Measures of Futility

When evaluating a group sequential stopping rule, it is often of interest to evaluate a stopping
rule with respect to the probability that the decision made when stopping at some interim analysis
might be different than the decision which might have been reached at the final analysis had the
study not been terminated prematurely. Evaluations of the stopping rule with respect to these
criteria are based on the distribution of some test statistic at the final analysis conditional upon
the test statistic being equal to the stopping boundary at an interim analysis. Because each stopping
boundary is associated with rejection of a particular hypothesis, it may be of interest to consider the
conditional probabilities under the corresponding hypotheses as determined by the group sequential
design. This then leads to the following definitions for

Cpaj = PT(7J>(IYJ|7]':GYJ»;M:MO—)

_ g Nlexy — mo] - Nylax; — po-]
U\/NJ—N‘]’
CDbj = PT(YJ<67J|7]':57]'§M:M—)
g (Nalbwy i) Nl ]
O'w/NJ—Nj

Cpej = Pr(Xy>cxy|Xj=cxj5m=ps)

e (NJ[CYJ — pt] — Njlex; —M+]>

O'w/NJ—Nj
Cpgy = Pr(X;<dg,;|X; =dx;; 1= po+)
- (NJ[dYJ — pot] — Njldx; — M0+]>

U\/NJ—N‘]’

It can be seen that these functions are closely related to the test statistic on the conditional
probability scale defined by eqn (1.7). That is, Cps; = Cj(ax,, to—) when X; = ax;s Cpyj =

(6.10)

1 —Cj(byj, ,u_) when Yj = bfjv Cch = Cj(CYJ, ,u+) when Yj = CYj’ and Ode =1 —Cj(dyj, ,u0+)
when Xj = de.
An alternative evaluation can be based on the conditional probabilities under the current best
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estimate of . This then leads to the following definitions

Craj = Pr(Xy>ax;|X;=ag;; n=X))

_ g Mlexs —axyl
/N, - N,

_ o (Mws byl
B o\/Nj—N;

Crej = Pr(X;>cx,|Xj=cx;;n=X))

g (Ml mex)]
NN,

B NJ[dYJ - dY']

Again it can be seen that these functions are closely related to the test statistic on the conditional
probability scale defined by eqn (1.8). That is, Crq; = Cj(ax;, p = X ;) when X; = ax;s Cryj =
1= Cjlbgy, p = Xj) when X; = by, Cpej = Cjlexgy, p = Xj) when X = cx;, and Cpg; =
1- Cj(dyj,u = Xj) when Xj = de.

We can also evaluate the stopping boundaries with respect to the predictive probability that an
opposite decision might be made at the final analysis, where the predictive probability is computed
by conditioning on the value of the test statistic at the boundary and averaging over the posterior
distribution A(u|X;). For instance, based on a noninformative prior distribution for pu (u ~
N (¢, 72) and taking the limit as 72 — oo) this then yields

Haj = /PT(YJ>(IYJ|7]:afjau))‘(u|YJ:aY])

Njlag; - afj]

Ny .

= 1-®

Hy — / Pr(X; < by, |X; =bg; ) Mul X = bx)

Nylbs; — bx)]

Hey = /PT(YJ > oxy | X5 = exjp W) Mp | X = ex;)

Nylex, — ij]

Hy - / Pr(X; < dg,| X = ds;o ) Mu | X = dy,)

= 1-®

Nydw, — dx.
— J[ XJ X]] (612)
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It can be seen that these functions are closely related to the test statistic on the predictive prob-
ability scale defined by eqn (1.9) with 72 = co. That is, Hyj = Hj(ax;, ¢, 00) when X, = ax;
Hbj =1- Hj(bYJ,C, OO) when Xj = bfjv ch = Hj(CYJ,C, OO) when Xj = CYj’ and de =
1 — Hj(d%,;,¢,00) when X; = dx;-

6.6 Bayesian Posterior Probabilities

The Bayesian properties of a particular stopping rule can be evaluated for a specified prior by
considering the posterior probabilities of the various hypotheses. As discussed in section 2, we will
consider posterior probabilities that are associated with rejection of the hypotheses. Hence for prior
distribution g ~ N(¢, 72) we define

By = Pr(p<po-|X; —aXJ)
po—[N;7% + 0% — NjTQayj —0%¢
oT\/N;T? + o2
By = Pr(p<p-|X;=0g)
p—[N;7% + 02 — Nj7'2byj — 0%
oT\/N;T? + o2
By = Pr(p>py| X = cx;)
s pi[NjT2 + 0% = NjrPeg; — 0%¢
oT\/N;7% + o2
By = Pr(p> poy|X; =dx;)
o o+ [N; 72+ 0% — NjTQdyj — 0%
oT\/N;7% + o2
It can be seen that these functions are closely related to the test statistic on the Bayesian posterior
probability scale defined by eqn (1.6). That is, Bsj = 1 — B;((, 72, o) when X; = axjs Boj =

- Bj(C77_27:u—) when 7] = bfjv BCJ = Bj(C77—27:u+) when 7] = ijv and Bd] = Bj(C77_27,u0+)
when Xj = de.

|
A

|
A

(6.13)
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7 Sample Size Determination

From the discussion in sections 1.6 and 5.3, it is clear that equivalent group sequential tests can
be specified either for the original data or for the standardizing transformation of the data. In
group sequential test design, the standardized problem allows us to determine sample sizes which
provide desired operating characteristics for specific alternative hypotheses. For instance, when
considering a one-sided level a hypothesis test of Hy : 1t = pg we might have a specified alternative
hypothesis, say, Hy : pt = up, for which we desire some level of statistical power, say B(u1) = 5.
These constraints suggest that we want the group sequential test in the standardized setting to have
operating characteristics 3% (0) = a and $*(d1) = 3, where 0; and j; are related by eqn (1.33).

When determining sample size, however, we have not yet determined the exact values of
Ni,...,Ny. In the standardized problem, however, we only need to know the relative sizes of
the N;’s. That is, the density in eqns (5.13) - (5.15) depends on the N’s only through the values
II; = (N;/Ny). Thus, so long as we specify the values of J and (II; = N1/Ny,...,II; = 1), we can
compute the density of the test statistic (M, S*) for the standardized problem. Determination of
the group sequential test design and sample size than proceeds in the following stages.

1. Search for standardized stopping boundaries having desirable operating characteristics on
the standardized scale, where the characteristics defined as desirable might be any of those
described in section 6.

2. Search for the standardized alternative d§; such that §*(d1) = . Note that for the purposes
of study design 3*(d1) is most typically either 5% (d1) or 3* (1), rather than the sum of the
upper and lower power functions.

3. Solve for the sample size N = N; by using the relation eqn (1.33) to obtain

6202
N = G = P (7:1)

The sample size at the kth analysis is then N; = II; N ;.

It is often the case that the maximum sample size is constrained by other considerations. In
this case, we would use the sampling density to determine the value of py for which the group
sequential test has By (u4) = Bu.

We note parenthetically that in later sections we describe families of group sequential designs
which are parameterized in part by 3, and [y, which will continue to have interpretations as the
power of the study under certain alternatives. Even in those settings, however, it is possible to
choose sample size based on some other alternative p; and a desired level of statistical power (.
We then use the relationships 3, = B4 (u+) and 8y = f—(u—) to define the values of puy and p_.
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8 General Framework for Families of Group Sequential Stopping
Rules

In section 2, we discussed the desirability of framing a hypothesis test in such a way as to allow
more precise interpretation of a failure to reject Hy. The deficiencies of classical hypothesis testing
in this regard become even more evident when using a group sequential design. However, the
application of the strategy adopted in section 2 is not always straightforward.

There is no particular problem in applying the model specified in section 2 to the case of one-
sided group sequential designs (e.g., designs A - C in section 4 above). That is, providing we have
chosen a stopping boundary that has the desired level of significance (84 (ug) = a for a test of Hy
versus H, or S_(up) = « for a test of Hy versus H_) we can always find the appropriate alternative
py or p— for which the test has statistical power (3, or By, respectively. Similarly, for two-sided
designs (e.g., designs D and E in section 4), if we have chosen a stopping boundary that has
B+(po) = /2 and B_(po) = /2, we can find the alternatives py and p_ such that 87 (uq) = By
and B* (4_) = fr.

There are, however, designs intermediate to the one-sided and two-sided designs. These are
designs which would have, for instance, 5% (10) = /2 and 3* (119) > /2. One use of such designs
would be when comparing a new treatment to a standard treatment when the goal is to show that
the treatments are roughly equivalent with respect to some primary endpoint (e.g., survival), but
that the new treatment is superior with respect to a secondary endpoint (e.g., quality of life). In
such a situation, we may not want to use a design which treats the two therapies symmetrically.
If we observed a trend for the new treatment to be worse with respect to the primary endpoint,
we might be unwilling to continue the trial to show statistically that it is actually worse than the
standard therapy. On the other hand, the requirements for the burden of proof may be such that in
order to abandon the standard therapy, we would need to have a result that is highly statistically
significant.

In the above discussion, we have implicitly parameterized these intermediate tests by the asym-
metry of the upper and lower power functions under the null hypothesis. In keeping with the phi-
losophy presented in section 2, however, we would like to maintain common standards of evidence
for rejection of hypotheses. Hence we consider an alternative parameterization of the intermediate
tests based on the hypotheses rejected by each of the stopping boundaries.

To implement this approach, we thus describe each of the four potential stopping boundaries
(‘a’,‘b’, ‘c’, or 'd’) as having two fundamental determinants: the hypothesis p, being rejected by the
boundary and a boundary shape function v, (Il;) describing the relationship between the boundaries
of the continuation sets at successive analyses. The ways in which the hypotheses and the boundary
shape function is used shall differ according to the scale of the group sequential test statistic which
will be compared to the boundaries. However, in all cases, a two-sided hypothesis test will be
viewed as the superposition of two one-sided tests: an upper hypothesis test of Hot : p < pos
versus Hy : pu > p4, and a lower hypothesis test of Ho— : p > pog— versus H_ : p < p—, subject to
the constraints

- < piot < po— < pg (8.1)
The size of the upper and lower tests will be denoted a,, and ay, respectively. Similarly, the power
of the upper and lower tests to detect their respective alternative hypotheses will be denoted (3,
and 0y, respectively. The individual hypotheses of the superposed hypothesis tests are associated
with the hypotheses rejected by each of the four stopping boundaries according to

Ha = Ho-
S
He = MK+

Hd = Mo+ (8:2)
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In this representation of a hypothesis test, we can obtain the classic one- and two-sided hypoth-
esis tests through appropriate choices of the four hypotheses:

1. A one-sided hypothesis test of the null hypothesis Hy : p < pg versus a greater alternative H :
1 > p is obtained by choosing the null and alternative hypotheses of the upper hypothesis
test to correspond to the desired one-sided hypothesis tests: po+ = po and gy = pp. The
lower hypothesis test is then chosen to be superposed exactly on top of that upper hypothesis
test. Determination of the exact correspondence between the hypotheses of the upper and
lower hypothesis tests will of course depend upon the values chosen for the size oy and power
B¢ for the lower test. However, it is easy to see that if ap = 1 — 3, and B¢y = 1 — a,, the
desired coincident tests are obtained by setting pg— = py and p— = poy.

2. A one-sided hypothesis test of the null hypothesis Hg : ¢t > g versus a lesser alternative H_ :
1 < pp is obtained by choosing the null and alternative hypotheses of the lower hypothesis
test to correspond to the desired one-sided hypothesis tests: pg— = pg and p— = p3. The
upper hypothesis test is then chosen to be superposed exactly on top of that lower hypothesis
test. Determination of the exact correspondence between the hypotheses of the upper and
lower hypothesis tests will of course depend upon the values chosen for the size o, and power
B for the upper test. However, it is easy to see that if o, = 1 — Gy and 8, = 1 — ay, the
desired coincident tests are obtained by setting poy = p— and py = po—.

3. A classical two-sided hypothesis test of the null hypothesis Hy : u = pg versus two-sided
alternative Hy : u # pg with power 8 to reject the null hypothesis when p = p; is obtained
by choosing the null hypotheses of the lower and upper hypothesis tests to each correspond
to the null hypothesis: po+ = po— = po. The alternative hypotheses of the lower and upper
tests are then set according to the value of py: If py > po, then we choose py = py, and
if u1 < pg, we choose pu— = p1. The alternative hypothesis that is not set equal to up is
determined from the corresponding choice of statistical power.

We formalize this approach for other hypothesis tests intermediate to these classical tests by
parameterizing the shifts of the upper and lower hypothesis tests. We define shift parameters 0 <
€ < 1land 0 < ¢ <1 for the upper and lower hypothesis tests, respectively. The parameterization
is such that when the shift parameter is zero, it is not of interest to discriminate between the
hypotheses of the corresponding hypothesis test. That is, when ¢, = 0, it is not of interest to
discriminate between a null hypothesis 1 = pg and a greater alternative p > pg. Similarly, when
e, = 0, it is not of interest to discriminate between a null hypothesis u = o and a lesser alternative
< pHo-

The exact parameterization of the hypothesis shifts are based on the classical hypotheses of a
two sided hypothesis test (o, p4, and p_ as described in section 2) and some maximal shift A,.
The hypothesis rejected by each boundary is defined by

fa = po+[1—elA,

= p-+[1—elAy

te = py—(1—e)Ay

pa = po— (1—eu)Ay (8.3)

From eqns (8.1) - (8.3), and by considering the maximal shift of the hypotheses when ¢;,+¢, = 1,
we find that

Ay, < min(py — po, po — p—). (8.4)
From eqn (8.3), we can see that when ¢, = ¢, = 1, both the ‘a’ and ‘d’ boundaries reject the
hypothesis that © = pg, and a two-sided hypothesis test is obtained. Furthermore note that if
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€, = 0 and € = 1, then pg = pp, = p— and pe = pg = po when A, = pg — pi— = pi — pg. Similarly,
if e, =1 and ¢ = 0, then y, = g = py and pg = pe = po when A, = pg — p— = py — po. Thus
we obtain one-sided tests with coincident hypotheses for the upper and lower hypothesis tests.

Choices of €, + ¢, between 1 and 2 result in tests that are in some sense intermediate to one-
sided tests (when €, + ¢, = 1) and two-sided tests (when €, + ¢, = 2). Moving ¢, from 1 to
0 corresponds to deciding that it is unimportant to distinguish between H_ and Hy as defined
in section 2. Analogous interpretations hold as ¢, is decreased. Of special note is the choice
€, = €, = 0.5, which corresponds to a test design which is sometimes used in one-sided equivalence
(noninferiority) testing.
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9 Parameterizations for Boundary Shifts for Group Sequential
Families

The general framework for group sequential tests described in section 8 must be implemented in
slightly different fashions depending upon the scale used for the group sequential test statistic.
That is, the way in which the hypothesis and the boundary shape function are used to construct a
group sequential stopping rule is different for the various test statistic scales.

9.1 Unified Family of Group Sequential Test Designs (Sample Mean Scale)

In the unified family of group sequential test designs described by [7], a family of group sequential
designs is parameterized on the sample mean statistic scale in part because on this scale the
boundary shapes are invariant to shifts in the value of p,. In this family, the stopping boundaries
at the jth analysis are determined from the hypothesis u, being rejected by the boundary and the
boundary shape function v(Il;) according to

dw; = pa + va(Il;)

oo = Jte—vely) i pe = we(Tl) > o + v (1)
< =
J (d%; +ax;)/2 else
e — JHe ol i pe = ve(Tl) > + v (1)
< =
J (d%; +ax;)/2 else
Ox; = Ha — va(115) (9.1)
On the nonstandardized sample mean scale, the boundary shape functions v,(IT) will depend
also on the maximal sample size N = N;. At the time of study design it is most convenient to work

on the standardized scale, in which case the stopping boundaries at the jth analysis will depend
upon the 6,’s and the standardized boundary shape functions v} (), v;(-),v5(-), and vj(-).

d, = 0a+ vy(1L;)
B {5C —wr(Ily) if 6, — v (TLy) > & + v (I15)
(d*fj + a*yj) /2 else

. {6b +op(I) i 0. — vi(T) > 8 + vi(TT))

*

CY]

Xi * *
J (dfj + ayj)/ 2 else
a*yj = dq — vy (I15) (9.2)

In the next section, we consider a specific form for the boundary shape functions v, (IIx). Here
we merely note that constraints (4.4) and (4.5) are satisfied if the boundary shape functions are
monotonically nonincreasing in II; and if the hypotheses rejected by the boundaries satisfy the
following constraints.

Se — 6a=v5(1) +vi(1) =d"
do— =0 (1) +vi(1)= -6~
6q — 06q < vi(1) 4+ vi(1) = 67 (9.3)

where 67, a standardized form of A, represents the maximal shift of the lowest boundary (specified
by the a*yk’s) toward the uppermost boundary (specified by the d*yk’s).
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Applying the general framework of eqn (8.3) to this standardized setting thus results in

g = (ey — 1)07

e = (€g — 1)67 + 67

6= (1 —e)0" + 6~

0o = (1 — €0)67 (9.4)

where 2 > ¢, + €, > 1.

9.2 Partial Sum Scale

The partial sum scale is a straightforward transformation of the sample mean scale, and thus the
framework of section 9.1 is easily modified to apply to the partial sum statistic scale. In the
standardized setting, the stopping boundaries are of the form

o ( ) i 0 —we(Il) > 6 + op (1)
59 ( 55+ aSJ)/ else
pr = d Ot up(ly) i 6 —we(lly) > & + vp (1)
59 (d* 55+ aSJ)/ else
agj = 6o — vg(1L) (9.5)

It should be noted that the straightforward transformation from the standardized partial sum
scale to the sample mean scale means that the partial sum scale family can be regarded as the
sample mean scale with an alternative parameterization of the boundary shape function. That is,
because dg / Pij = d , the same stopping rule that is obtained with boundary shape function
v;(IL;) in the partial sum family would be obtained with boundary shape function II;v%(Il;) in the
sample mean family. This correspondence is the way that this family is implemented in S+SeqTrial.

9.3 Normalized Z Statistic Scale

The normalized Z statistic scale is a straightforward transformation of the sample mean scale, and
thus the framework of section 9.1 is easily modified to apply to this scale. In the standardized
setting, the stopping boundaries are of the form

)0 —v( i) i de —vi(IL;) > 0 + vy (1)
Z (dy; +ay;)/2 else
o _ )o ol i 6o — vz (Thy) > 6 + vy (TL)
Z (dy; +ay;)/2 else
az; = 0a — Ug(11;) (9.6)
It should be noted that the straightforward transformation from the standardized partial sum
scale to the sample mean scale means that the partial sum scale family can be regarded as the

sample mean scale with an alternative parameterization of the boundary shape function. That is,
because d*Zj [/ Pij = d*fjv the same stopping rule that is obtained with boundary shape function
v;(IL;) in the partial sum family would be obtained with boundary shape function ./II;v}(II;)

in the sample mean family. This correspondence is the way that this family is implemented in
S+SeqTrial.
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9.4 Error Spending Scale

Stopping boundaries for the error spending scale will be based on the error spending functions. In
the definition of the error spending scales (eqns (1.10) and (1.11)) and the error spending functions
(eqns (6.7) and (6.8)), the various hypotheses being rejected by their respective boundaries appear in
the computation of the error spending statistics in a complicated fashion along with the stopping
boundaries at the various analysis times. In defining stopping boundaries based on the error
spending statistics, the dependence of the stopping boundaries on the hypothesis being rejected
will be through which error spending function is related to the boundary shape function. Hence,
the stopping boundaries will be defined by

Eq(11;) = vq(11;)
Ec(Hj) = UC(Hj)
Ey(I1;) = vp(I15)
FullT}) = va(TTy) (9.7

The way that this definition can be used to define stopping boundaries is illustrated by con-
sidering the ‘d” boundary. The function F4(II;) represents a probability that the group sequential
statistic S; will exceed dg; under the hypothesis jiq. Eqn (9.7) stipulates that dg; must be chosen
such that F4(II;) is exactly equal to the value given by the boundary shape function v4(II;). Clearly
this is an implicitly defined value— no closed form solution for dg; is possible.

In the formulation of the error spending statistic boundaries, the value of A, will be taken to
be the upper bound on the range specified by eqn (8.4): A, = min(u4 — o, po — p1—)-
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10 Parameterizations for Boundary Shape Functions for Group
Sequential Families

In specifying designs A - E in section 4 above, one or more of the boundaries of the continuation
sets were described as arbitrary. Generally, the space of all possible choices of those arbitrary
boundaries which would provide the desired operating characteristics for a group sequential test is
too large to work with easily. In the last section, we described a partial parameterization of the
boundaries which makes the search for stopping rules more tractable. In this section, we describe
a family of boundary shape functions that impose a functional relationship on successive points
along the continuation set boundaries.

For notational convenience, the boundary shape functions are described on the standardized
scales. The general form of the boundary shape functions used in S+SeqTrial is given by

v*(I) = {A+ 11771 — %)@ (10.1)

for specified parameter P, R, and A. As a general rule, the constant G is found in order to provide
desired type I error and statistical power. The ranges of valid choices for the parameters P, R,
and A depend upon the group sequential test statistic scale for which the boundaries are defined.
Nevertheless, from the above, we can deduce the basic roles that each of the parameters play in
determining a stopping boundary. All of the parameters can be thought of as relating to the
conservatism of the decision to terminate the study at the earliest analyses. The way in which they
affect that conservatism in terms of the shape of the stopping boundary is very different, however.

1. P, when positive, is a measure of conservatism at the earliest analyses: The higher the value
of P, the more difficult it will be for a study to terminate at t he earliest analyses. When P
is infinite, the stopping boundary is infinite at all interim analyses.

2. P when negative, is a measure of conservatism at the earliest analyses: The more negative the
value of P, the more difficult it will be for a study to terminate at the earliest analyses. Exactly
how difficult it will be to terminate at the earliest analysis relative to the final analysis will
be affected by the value of the A parameter. (Note that it is difficult to compare the degree
of conservatism for positive P and negative P, as the boundary shape is quite different.)

3. R, when positive, is a measure of lack of conservatism at the earliest analyses: The higher the
value of R, the less difficult it will be for the study to terminate at the earliest analyses. The
degree to which the value of R can affect the conservatism at the earliest analyses is greatly
affected by the values of P and A. If P is also positive, the R parameter affects the curvature
of the stopping boundary at the later analyses, but the P parameter has the greatest influence
on the conservatism at the earliest analyses.

4. A is a measure of separation between the first and last analyses, and thus can affect the
conservatism of the test overall. When the G critical value is positive (as tends to be the case
when P is positive or zero), a larger value of A tends to make the design less conservative at
the earlier analyses. When the G critical value is negative, then A tends to be negative, and
a more negative value of A makes to design less conservative at the earlier analyses. This
behavior can be deduced for some cases from the fact that when the magnitude of A is large,
the difference between A and A+1 is less substantial.

10.1 Unified Family of Group Sequential Test Designs (Sample Mean Scale)

There are two general forms of boundary shape functions that have received substantial attention
in the statistical literature. [16] and Whitehead (1992) consider boundary shape functions which
are linear in II; on the partial sum statistic scale. That is, a plot of, say, the dg;’s versus II;
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produces a straight line. The computer package PEST3 implements such boundaries for continuous
monitoring (so nj =1 for all j = 1,...,J) with an approximation used for group sequential tests.
Such linear boundaries have been implemented in PEST3 for stopping rules of types A, C, D, and
E (as described in section 4) for situations in which all stopping boundaries use the same boundary
shape function.

[13] consider boundary shape functions which are powers of II; on the partial sum scale. Specif-
ically, they examined tests of type D having dg; = —ag; = HJA where 0 < A < 0.5. This family
includes the [11] and [8] designs as special cases. These boundary shape functions were then ex-
tended to stopping rules of types C and E by [3] and [9]. They were used in stopping rules of type A
and B by Emerson (1988). The software package EaSt implements these boundary shape functions
for stopping rules of types A, C, D, and E for situations in which all stopping boundaries use the
same boundary shape function.

We consider here a boundary shape function which unifies these two families, as well as extending
them to include additional boundary shapes. In this parameterization, we use parameters A, Pk,
and R,, and critical value G, to define

0. (TTg) = { A, + T [1 = T ) B4} G

As described in the next section, the parameters A,, P,, and R, are usually specified by a user
subject to constraints outlined below, and the critical value G, is usually found in a computer
search to obtain desired operating characteristics.

The above boundary shape function includes the following special cases:

1. A, =0, P, > 0, R, = 0: This corresponds to the [13] family of boundary shape functions
extended to the range considered by [3], although the parameterization is different. In the
current parameterization, the choice P, = 0.5 corresponds to a [11] boundary shape, and
the choice P, = 1 corresponds to an [8] boundary shape. In general, P, is a measure of the
tendency of the stopping rule to test conservatively at the earliest analyses, with larger values
of P, corresponding to greater early conservatism.

2. A, =1, P, = 1, R, = 0: This corresponds to the boundary shape function used in the
triangular and double triangular tests of [16].

3. A, unconstrained, P, = 1, R, = 0: This corresponds to the boundary shape function used in
the restricted procedures described by Whitehead (1992) and implemented in PEST3.

4. A, unconstrained, P, = 1, R, = 0: This corresponds to the boundary shape function used in
the restricted procedures described by Whitehead (1992) and implemented in PEST3.

5. A, unconstrained, P, = 0.5, R, = 0.5: This corresponds to the sequential conditional proba-
bility ratio tests described by [17].

6. A, =1, P, =1, R, =1: This is an alternative parameterization of the [8] tests.

It is useful to examine the behavior for this family of boundary shape functions over a range of
parameter choices. First we note that the boundary shape function is monotonically nonincreasing
in Il only if R, > 0. Furthermore, it may not be possible to find critical values which provide
the desired operating characteristics for arbitrary choices of A,. In general, however, the general
behavior of the boundary shape function can be determined from the following table.
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Range Range Value of Value of
of P, of R, v4(0) vi(1) Concavity
(0,00) [1,00] 00 AGy upward
(0,00) (0,1) 00 AG, upward then downward
(0,00) 0 00 (A, +1)G. upward
0 (1,00] (A, +1)G. A,G, upward
0 1 (A, +1)G. A, G, none (line)
0 (0,1) (A, +1)G. A,G, downward
0 0 (A, +1)G. (A, +1)G. none (line)
(-1,0) 0 A,G, (A, +1)G. downward
-1 0 A, G, (A, +1)G. none (line)
(-00,-1) 0 A,G, (A, +1)G. upward

Of the three boundary shape function parameters, all tend to control the degree of conservatism
used in stopping at the earliest analyses. The parameter P, is perhaps the most interpretable of
these, as larger values of P, make it increasingly difficult to terminate a study at the earliest
analyses. As discussed below, a value of P, = oo will preclude early stopping for the corresponding
boundary. Note that when P, < 0, the stopping boundary is finite even when no data has been
collected.

Generally, it can be seen that the boundary shape functions previously described and imple-
mented in commercially available software packages are concave upward. Through expanding the
range of the parameter Py, as well as introducing R, we have included boundary shapes which
are concave downward. Of particular note is the case where P, > 0 and 0 < R, < 1, when the
boundary shape is concave upward for I, < (Px — \/(PcRys/(Pc — Ra + 1)) /(P — R.).

In the group sequential tests defined in (9.2), we allow each of the four potential boundaries
to have its own boundary shape function. That is, we can choose A,, P, R, separately for each
of the four boundaries specified by the dw,’s, the cg,’s, the b%,’s and the aw,’s. This is an
extension of the designs described previously in the statistical literature, but one which facilitates
the exploration of candidate stopping rules for a particular clinical trial. This is effected by the
fact that such flexibility allows the basic types of designs described in section 4 to be joined by a
continuous parameter.

To see this, note that when P, = oo, the corresponding boundary allows no early stopping.
That is, we can construct each of the 5 types of designs in section 4 by considering only design type
E with suitable choices of the boundary shape function parameters.

A. A single upper early stopping boundary: P; arbitrary, P. = P, = P, = o
1. Test of Hy versus Hy: ¢, =1,¢, =0
2. Test of Hy versus H_: ¢, =0, ¢, =1

B. A single lower early stopping boundary: P, arbitrary, Py = P. = P, = co.
1. Test of Hy versus H_: ¢, =0, ¢, =1
2. Test of Hy versus Hy: ¢, =1, ¢, =0

C. Lower and upper early stopping boundaries which meet at the final analysis: Py, P,, Py, and P,
arbitrary (however, choosing v.(Il;) = v4(Il;) and vy (I1;) = vg(Il;) will tend to yield the most
intuitive relationships among the critical values G4, G, Gy, G4, because when €, + ¢, = 1 the
boundaries within each of those pairs are coincident).

1. Test of Hy versus Hy: ¢, =1,¢, =0
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2. Test of Hy versus H_: ¢, =0, ¢ =1

D. Lower and upper early stopping boundaries which do not meet at the final analysis: Py and P,
arbitrary, P, = P, = 00; €, + €, > 1

E. Four boundary design: Py, P,., Py, P, arbitrary; €, + € > 1

It should be noted that depending upon the exact choices of the boundary shape function
parameters and the maximal number of analyses J, early stopping may not be possible under
all four boundaries. This should be clear, given our ability to define stopping rules of types
A, B, C, and D using the general structure of these four boundary designs.

10.2 Partial Sum Scale

As noted in section 9.2, the family of group sequential designs implemented with the boundary
shape function given by eqn (10.1) on the partial sum scale can just be regarded as a family of
group sequential designs implemented on the sample mean scale with boundary shape function

v () = T{A + TP [1 — %} G (10.2)

This is the way that this family is implemented in S+SeqTrial.

10.3 Normalized Z Statistic Scale

As noted in section 9.3, the family of group sequential designs implemented with the boundary
shape function given by eqn (10.1) on the normalized Z statistic scale can just be regarded as a
family of group sequential designs implemented on the sample mean scale with boundary shape
function

o' () = VI[A+ 1T — 1 F} @ (10.3)
This is the way that this family is implemented in S+SeqTrial.

10.4 Error Spending Scale

A design family based on a generalization of the error spending function approach of Lan and
DeMets (1983) and [10] is defined by setting the error spending function for each of the four
possible stopping boundaries (the ‘a’, ‘b’, ‘c¢’, and ‘d’ boundaries) independently. The boundary
shape function is again based on eqn (10.1) to define the cumulative proportion of the type I error
(for the ‘a’ and ‘d’ boundaries) or type II error (for the ‘b’ and ‘c’ boundaries) that is spent at the
analysis in which proportion 0 < II; < 1 of the statistical information has been accrued. At the
final analysis, it is assumed that all of the type I and type II error will have been spent, and thus
all boundaries at the final analysis correspond to error spending functions of 1.

Boundaries on the error spending function range from 0 to 1. Because of this restricted range,
boundary shape functions are only possible for certain combinations of the boundary shape function
parameters:

1. Negative values of P (with R = 0). In this setting, P measures the early conservatism of
the stopping rule with more negative values of P corresponding to stopping rules that have
lower probabilities of terminating the study at the earliest analyses. A value of P = —3.25
approximates the operating characteristics of an O’Brien-Fleming boundary relationship for
a one-sided type I error of .025 (although this error spending function based stopping rule
does not exhibit the very extreme conservatism at the earliest analyses that is common with
the O’Brien-Fleming boundary relationship).
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2. Positive values of R (with P = 0). In this setting, as R increases the stopping rule becomes
less conservative at the earliest analyses.

3. The interesting special case of P = 0 and R = 0 can be used to preclude early termination
of the study.

In each case, the values of A and G are uniquely determined by the choice of P and R, thus

you never need specify either of these latter two parameters when using the error spending function

family.
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11 Constrained Boundaries for Group Sequential Families

It can often happen that the stopping rule obtained from a parametric design family is unsatisfactory
at one or more analyses. For instance, many clinical trialists find the extreme conservatism of
the O’Brien-Fleming boundary relationships at the earliest analyses undesirable. One common
modification of O’Brien-Fleming boundary relationships is to use the least extreme of the O’Brien-
Fleming boundary or a critical value corresponding to a fixed sample two-sided P value of .001.
In order to facilitate this type of modification of stopping rules, constraints on the boundaries at
particular analyses can be specified, with all unconstrained boundaries being determined from a
parametric design family in such a way to maintain the desired operating characteristics (size and
power) of the study design.
Constraints on the boundaries can be

1. Exact constraints. You enter the exact stopping boundary desired for a particular boundary
(‘a’, ‘b, ‘¢’, or ‘d’) at a specific analysis.

2. Minimum constraints. You enter a value for the stopping boundary that is the minimum value
that you would like desired for a particular boundary (‘a’, ‘b’, ‘c’, or ‘d’) at a specific analysis.
If the parametric design family would result in a higher threshold for early termination at that
analysis time, the boundary from the parametric family will be used instead of this minimum
constraint.

3. Maximum constraints. You enter a value for the stopping boundary that is the maximum value
that you would like desired for a particular boundary (‘a’, ‘b’, ‘c’, or ‘d’) at a specific analysis.
If the parametric design family would result in a lower threshold for early termination at that
analysis time, the boundary from the parametric family will be used instead of this maximum
constraint.

If the group sequential design family is based on the sample mean, partial sum, or normalized
7 statistic scales, the boundary constraints can be specified on any valid boundary scale EXCEPT
the error spending function scale. On the other hand, if the group sequential design family is based
on the error spending scale, the boundary constraints can ONLY be specified on the error spending
function scale.

When specifying the minimum or maximum constraints, the concept of ”minimum” and ”max-
imum” is based on the ordering of the sample mean statistic. That is, one boundary is less than
another if the boundary is lower on the sample mean scale. This distinction is important because
some boundary scales have a reverse ordering. For instance, because the fixed sample P value scale
is measured on the scale of a P value for a one-sided test of an upper alternative regardless of
the type of hypothesis test being designed, a higher boundary on the sample mean scale actually
corresponds to a lower number on the fixed sample P value scale. Thus if you want to apply a
constraint to avoid having the upper efficacy boundary of an O’Brien-Fleming test more extreme
than the critical value of a fixed sample two-sided P value of .001, you would create a maximum
constraint on the fixed sample P value scale that has .0005 in the appropriate position in the
constraint matrix.

On the sample mean scale, the search for a particular group sequential design is thus effected
through the following steps:

1. The user specifies a particular probability model for the problem, including the number
of arms, a probability model for the response, and a summary measure for describing the
response within treatment arms. In this specification, specific values for v, 6y, g(-), and o>
are determined (see section 3).

2. The user specifies the desired operating characteristics
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a) The size of the upper test ay,

(
(
(¢) The power of the upper test (3,
(d) The power of the lower test [,

)
b) The size of the lower test ay
)

In keeping with the philosophy of [3] and the discussion of section 2, typical choices might
generally be a,, = ay = a and 3, = By = 1 — «, although group sequential stopping rules are
also well-defined for other choices of operating characteristics.

3. The user specifies the number J and timing of the analyses Iy, Ilo, ..., II;. Several authors
have found that the general operating characteristics of a design are fairly robust to slight
variations in the number and timing of analyses, so for design purposes it is adequate to have a
rough idea of these parameters. At the time of actual monitoring of the study, exact methods
can be used to maintain the general behavior of the stopping boundaries while controlling
the type I error exactly. We also note that in our standardized test, it is sufficient to merely
specify the II;’s, but it is also possible to specify the IN;’s and compute the II;’s from them.
Lastly, because a fixed sample test is a special case of a group sequential test, and the usual
fixed sample critical values will be found by choosing J = 1.

4. For each of the four potential boundaries, the user specifies the values for the three parameters
Ay, Py, R, of the boundary shape functions (see section 10).

5. The user specifies the parameters ¢, and €y which correspond to gradations between one- and
two-sided hypothesis tests (see sections 8 and 9).

6. The computer searches for critical values Gg, G, Gy, G,. In general, each of these critical
values are dependent upon all of the design parameters specified in steps 2 - 5 above. That
is, changing the values of Ay, Py, Ry will affect not only the value of G4, but it will also have
a slight effect on the values of G, Gy, G4. In this search,

(a) values for the critical values are guessed, and the stopping boundaries computed using
eqn (9.2) with the appropriate boundary shape functions as specified by eqn (10.1).
The values of the standardized alternatives 61 and J_ are easily computed according to
eqn (9.3).

(b) Each of the potential boundaries are then compared to any specified constraints, and
any necessary modifications made.

(c) The operating characteristics of the trial design are computed.

(d) A new guess for the critical values is made using a Newtonian search with finite difference
estimates of the Jacobian matrix.

(e) When a design with acceptable precision for the operating characteristics is found, the
search terminates.

7. The sample size for the trial is determined. Typically, this is done by either of the following
two methods:

(a) The user specifies which of the two alternative hypotheses (Hy or H_) is to be used for
satisfying the power constraint, and the value of the natural parameter 6 is specified for
that hypothesis. The sample size N; can then be computed using (30), with the value of
the other alternative computed by substituting that value of N; into (7.1) and solving
for the value of p_ (if H, was used to determine the sample size) or py (if H_ was used
to determine the sample size).
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(b) The user specifies the sample size N; which is practical, and that value is then substituted
into (7.1) to determine the values of p4 and p_.

8. A candidate design should then typically be evaluated for its unconstrained operating char-
acteristics and stopping boundaries. Such evaluation might typically include

(a) Power curves as a function of various specified values of the natural parameter 6.

(b) sample size at study termination as a function of various specified values of the natural
parameter 6.

(c) A description of the statistical inference possible (P values, point estimates, confidence
intervals) at each of the stopping boundaries at each of the analyses (see section 13
below).

(d) Examination of the stopping boundaries on other scales, such as the futility or Bayesian
scales.

Through the use of exact constraints you may enter arbitrary stopping rules. When using the
sample mean, partial sum, or normalized Z statistic design families, if the exact constraint matrix
is fully specified, all group sequential design parameters are ignored except the alpha and beta
parameters. The values of the alpha and beta parameters will be used to find the hypotheses
rejected by each boundary.

When an exact constraint matrix is fully specified on the error spending scale, a group sequen-
tial design having the specified error spending functions is obtained. In this way, arbitrary error
spending functions can be used for group sequential test design.

The search for boundaries using error spending functions is effected as described in the appendix
of [7].
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12 Flexible Implementation of Stopping Rules Based on Con-
strained Boundaries

The stopping rule chosen in the design of a clinical trial serves as a guideline to a Data Monitoring
Committee as it makes the decision to recommend continuing or stopping a clinical trial. If all
aspects of the conduct of the clinical trial adhered exactly to the conditions stipulated during the
design, the stopping rule obtained during the design phase could be used directly. However there
are usually at least two complicating factors that must be dealt with when during the conduct of
the clinical trial.

First, the schedule of interim analyses does not follow that used in the design of the trial.
Often, meetings of the Data Monitoring Committee are scheduled according to calendar time, and
thus the sample sizes available for analysis at any given meeting is a random variable. Similarly,
accrual may be slower or faster than planned, thereby resulting in a different number of interim
analyses than was originally planned. FEither of these eventualities will necessitate modifications
of the stopping rule, because the exact stopping boundaries are dependent upon the number and
timing of analyses. For instance, an [8] design appropriate for four equally spaced analyses has
different stopping thresholds than an [8] design appropriate for four analyses scheduled after 50%,
70%, 85%, and 100% of the data have accrued.

Second, the estimate for response variability that was used at the design phase was incorrect.
Often very crude estimates of response variability or baseline event rates are used at the design
phase. As the trial progresses, more accurate estimates are to be used. Clearly the operating
characteristics of particular stopping rules are heavily dependent on the variability of response
measurement.

In order to address these issues, flexible methods of implementing stopping rules have been
developed which allow the clinical trialist to maintain at least some of the operating characteristics
of the stopping rule. Typically such flexible methods always maintain the size (type I error) at the
prescribed level. A choice must then be made as to whether the maximal sample size or the power
to detect the design alternative should be maintained.

The flexible methods of implementing stopping rules followed here are based on the idea of
computing a stopping boundary for the current interim analysis in such a way that the desired
operating characteristics are satisfied and that the stopping rule is constrained to agree with the
stopping boundaries used at all previously conducted interim analyses. Thus the flexible monitoring
methods are based on the concept of the constrained stopping boundaries described in section 11.

In this approach, a general parameterization of a stopping rule is defined at the design stage by
choosing

1. desired operating characteristics ay, oy, B¢, and Gy;

2. hypothesis shift parameters ¢, and ¢,;

3. a boundary scale for the group sequential test statistic;

4. boundary shape parameters P, R, and A for each of the four stopping boundaries; and

5. any desired exact, minimum, or maximum boundary constraints (specified according to the
planned schedule of interim analyses).

At the design stage a method of implementing that stopping rule is also specified by choosing
1. a boundary scale for constraining the boundaries at previously conducted analyses; and

2. whether the maximal sample size or the power to detect the design alternative will be main-
tained (it is possible to decide to set an absolute limit on the maximal sample size, but to
maintain statistical power otherwise).
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If the error spending scale is chosen as the scale for constraints with a design originally chosen
on the sample mean scale, the error spending function for the parametric design using the planned
schedule of interim analyses is used as an exact constraint of a design on the error spending scale.
That is, the stopping rule defined at the design stage is converted to a stopping rule specified by a
fully constrained error spending function.

The monitoring of the trial then proceeds as follows:

1. At the first analysis, the stopping boundaries are derived by using the parametric family
(possibly constrained) specified in the design. The exact stopping boundary is computed by
considering the proportion II; of statistical information available at that first analysis. The
value of II; depends on which operating characteristics of the stopping rule are maintained
during the monitoring process:

(a) If the maximal sample size N is to be maintained, II; = Ny/N.

(b) If the power of the test to detect the design alternative is to be maintained, an estimated
schedule of future analyses is used to compute Iy, . .., I1;, and then a stopping rule using
the design parametric family (possibly constrained) is found which has the desired power.
This consists of searching for the value of NV which has the correct type I error and power
to detect the alternative for the parametric design family for the estimated schedule of
interim analyses.

In either case, interpolation of the exact, minimum, or maximum constraints specified at
the design stage is used to derive any constraints for the interim analyses specified by the
estimated schedule of future analyses (which may differ from the schedule specified at the
design stage). The current best estimate of the statistical information contributed by a single
sampling unit (based on the best estimate of 02) is used instead of the estimate supplied at
the design stage.

2. At later interim analyses, the exact stopping boundaries used at previously conducted interim
analyses are used as exact constraints at those analysis times, and the stopping boundaries
at the current analysis and all future analyses specified by an estimated schedule of future
analyses are computed using the parametric family of designs specified at the design stage.
The basic approach is that described for the first analysis, in which the proportion of statistical
information at the jth analysis is computed based either on the planned maximal sample
size N if that operating characteristic is to be maintained, or it is computed based on a
recomputation of a sample size which takes into account the new schedule of interim analyses
and the current best estimate of the statistical information contributed by a single sampling
unit. In either case, II; = N;/N is used as the proportion of statistical information available
at the jth analysis (see comments below on the difference between this approach and that
used by PEST and EaSt).

It should be noted that due to the re-estimation of o at each analysis, the stopping bound-
aries at previously conducted interim analyses depend upon which boundary scale is used when
constraining the stopping rules at those analyses. That is, if the value of o2 used in computing the
stopping rule is constant over the course of the study, it is irrelevant which boundary scale is used
for the constraints at previously conducted analyses. If, as is usually the case, the estimate of that
statistical information varies over the study, there will be some difference between the boundaries
obtained. There is no clear advantage for one such scale over another.

This approach based on constrained boundaries is a generalization of the error spending ap-
proach of Lan & DeMets (1983) and [10]: That approach corresponds to boundary constraints
specified on the error spending scale. It should be noted that if the maximal sample size is not con-
strained, the error spending function specified at the design stage is only approximately obtained.
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It should be noted that the approach specified here differs somewhat from the methods imple-
mented by PEST and the information based monitoring implemented by EaSt. In those programs,
the statistical information at previously conducted interim analyses is not recomputed to reflect
updated estimates of the value of o2. That is, at the jth analysis, an estimate &]2 was available, and
the statistical information available at the jth analysis was estimated as N,/ &?. PEST and East
then estimate the proportion of statistical information available at previously conducted analyses
using the estimate of statistical information that was available at that analysis. Using this kind
of approach, if at the first analysis the estimated statistical information was estimated as Ny /62,
and at the current jth analysis the estimated maximal statistical information is N/ &?, the value
of II; might be taken to be [N1/6%]/[N/ 6?] or the same proportion as was estimated at the first
analysis. Again, this is just another way of approximating the true schedule of interim analyses,
and it is not immediately clear that one method is uniformly better than another. The approach
taken here is in effect trying to correct for poor estimates of o2 that might have been used at the
earliest analyses, and thus perhaps better approximate the true sampling distribution. It is still
just an approximation to the sampling distribution, however.
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13 Estimation Following a Group Sequential Test

In a fixed sample study, where the final sample size is fixed in advance of collecting any data, the
most attractive estimator of the mean of a normal distribution is the sample mean. We commonly
compute P values and confidence intervals based on the distribution of this estimator. However,
the use of a group sequential stopping rule generally alters the sampling distribution of the usual
fixed sample statistics, thus special techniques must be used to compute point estimates, interval
estimates and P values.

[4] and [1] discuss the various estimators that can be used in the group sequential setting.
Suppose we have observed test statistic (M, S) = (m, s) from a group sequential test. Estimates
that we will be interested in include

1. P values:
P=Pr[(M,S)>(m,s);6=0] (13.1)

2. Point estimates:

(a) Maximum likelihood estimate (MLE): The MLE in the group sequential setting is merely
the sample mean. However, following the use of a group sequential stopping rule, the
MLE is now biased, and its distribution is not normal. The MLE ¢ is computed according

to
S

0= 13.2

= (13.2)

(b) Median unbiased estimate (MUE): The median unbiased estimate is that value ¢ such
that ~

Pr [(M, S) > (m, s);8 = 5} = 0.5 (13.3)

(¢) Bias adjusted mean (BAM) [14]: The BAM is that value § such that

S < s

(d) Rao-Blackwell adjusted unbiased estimate (RBUE): This estimator is computed using
the Rao-Blackwell improvement theorem. Within certain classes, this can be shown to
be a uniform minimum variance unbiased estimator (Liu & Hall, 1997), and hence this
estimator has been referred to as the UMVUE. The estimator § is found as

S1

6=F [E (M, S) = (m, s)] (13.5)

3. Confidence intervals: A 100(1 — 2% confidence interval is (97, o), where the endpoints are
defined such that

(13.6)

In order to compute the P value, MUE, and confidence intervals, we must define an ordering
of the sample space for the bivariate statistic (M, .S). There is no uniformly optimal ordering, but
several orderings have been proposed. Two orderings that each have some advantages are
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1. Ordering by analysis time [12]: This ordering is not defined for group sequential designs
having agi < bsi < csi < dgi at any of the analyses. That is, it is only defined for designs
in which the continuation sets can always be written as a single interval. In such designs, the
ordering is defined using the boundaries of the continuation sets. Under this ordering

myp < mg and s1 < x,Vz € Copmp,
(my, 1) < (Mo, s9) iff my = mg and 51 < S (13.7)
my > mg and sg > x,Vz € Cop,

2. Ordering by the sample mean [4]: This ordering is defined for all group sequential designs,
and for a wide variety of group sequential designs was found to average shorter confidence
intervals than the ordering based on the analysis time. Under this ordering

S1 S92

<

13.8
N < N (13.8)

(ml,sl) < (m2,82) iff
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